Project Icon

tner-xlm-roberta-base-ontonotes5

XLM-RoBERTa多语言命名实体识别模型实现高精度实体标注

该命名实体识别模型基于XLM-RoBERTa预训练模型微调,专用于令牌分类任务。模型支持识别组织、人名、地点等多种实体类型,采用12层注意力头结构,词汇表包含250002个词。项目提供完整训练数据集和评估指标,并通过tner库实现简单集成。其开源特性和易用API使其成为构建高性能多语言NER应用的理想选择。

MAP-NEO - 开源大语言模型 性能卓越且训练过程透明
GithubMAP-NEO大型语言模型开源开源项目性能评估训练数据
MAP-NEO是一个完全开源的大语言模型,其预训练数据、处理流程、脚本和代码均可获取。该模型在4.5T英中文数据上训练,性能与LLaMA2 7B相当。在推理、数学和编码等任务中,MAP-NEO表现优异。项目公开了训练全过程,包括检查点、分词器、语料库和优化代码,为大语言模型研究提供了宝贵资源。
nanoT5 - 轻量高效的T5模型训练框架
GithubPyTorchT5模型nanoT5开源项目自然语言处理预训练
nanoT5是一个开源项目,旨在提供高效训练T5模型的方案。该项目在单GPU上仅用16小时就能达到与原始T5模型相当的性能,显著降低了训练成本。nanoT5优化了数据预处理、优化器选择等训练流程,为NLP研究人员提供了易用的研究模板。作为首个PyTorch实现的T5预训练框架,nanoT5为计算资源有限的研究者提供了宝贵工具。
mteb - 多任务文本嵌入模型评估基准
GithubMTEB基准测试开源项目文本嵌入自然语言处理评估
MTEB是一个开源的文本嵌入模型评估基准,涵盖多种任务类型和语言。它提供标准化的测试集、灵活的评估配置和公开排行榜。研究人员可以使用MTEB评估自定义模型,添加新任务,并进行模型性能比较,从而推动文本嵌入技术的进步。
DNABERT - DNABERT:用于基因组DNA语言处理的双向编码器模型
BERTDNABERTGPUGithub基因组开源项目预训练模型
DNABERT提供完整的源码、使用示例、预训练和微调模型,适用于各类基因组DNA语言处理任务。该项目利用Huggingface的扩展工具,增添了多任务支持和高效的可视化功能。最新版DNABERT-2不仅提升了多物种基因组的处理能力,还发布了全面的Genome Understanding Evaluation (GUE)基准测试,涵盖28个数据集。
bert4torch - 基于PyTorch开发的自然语言处理工具
Githubbert4torch功能开源项目快速上手模型预训练权重
bert4torch是一个基于PyTorch开发的自然语言处理工具。支持包括BERT、RoBERTa、GPT在内的多种预训练模型,适用于广泛NLP任务。提供丰富示例及详尽文档,助力快速实施项目。特包高级功能如大模型推理,极致满足专业需求,是NLP领域的首选工具库。
HanLP - 面向多语种的生产环境自然语言处理工具,支持PyTorch与TensorFlow
GithubHanLPPyTorchTensorFlow多语种开源项目自然语言处理
HanLP是一款面向生产环境的多语种自然语言处理工具,基于PyTorch和TensorFlow双引擎。支持130种语言和多种NLP任务,包括分词、词性标注、命名实体识别和依存句法分析等。HanLP的预训练模型持续更新,并提供RESTful API和native API,适用于敏捷开发和移动应用。
classifier-multi-label - 基于BERT的多标签文本分类算法实现
BERTGithubSeq2SeqTextCNNtf.nn.softmax_cross_entropy_with_logits多标签分类开源项目
本项目介绍了如何使用BERT结合TextCNN、Denses、Seq2Seq等多种算法实现多标签文本分类。涵盖了模型结构、损失函数和解码方法等细节,展示了不同方法在推理速度和分类效果上的表现,提供了实验数据和结论,帮助开发者选择最佳解决方案。
keras-nlp - 兼容多框架的自然语言处理工具和预训练模型
GithubJAXKerasNLPPyTorchTensorFlow开源项目自然语言处理
KerasNLP 是一个兼容 TensorFlow、JAX 和 PyTorch 的自然语言处理库,提供预训练模型和低级模块。基于 Keras 3,支持 GPU 和 TPU 的微调,并可跨框架训练和序列化。设置 KERAS_BACKEND 环境变量即可切换框架,安装方便,立即体验强大 NLP 功能。
YAYI-UIE - 多领域信息抽取统一模型
GithubYAYI-UIE信息抽取大模型开源开源项目指令微调
YAYI-UIE是一个信息抽取统一大模型,基于百万级高质量数据训练而成。该模型支持命名实体识别、关系抽取和事件抽取等任务,涵盖通用、安全、金融、生物、医疗等多个领域。YAYI-UIE在多个中英文数据集上展现出优秀的零样本性能,为信息抽取研究和应用提供了有力工具。作为开源项目,YAYI-UIE促进了中文预训练大模型社区的发展,推动了开放人工智能生态系统的建设。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

白日梦AI

白日梦AI提供专注于AI视频生成的多样化功能,包括文生视频、动态画面和形象生成等,帮助用户快速上手,创造专业级内容。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

讯飞绘镜

讯飞绘镜是一个支持从创意到完整视频创作的智能平台,用户可以快速生成视频素材并创作独特的音乐视频和故事。平台提供多样化的主题和精选作品,帮助用户探索创意灵感。

Project Cover

讯飞文书

讯飞文书依托讯飞星火大模型,为文书写作者提供从素材筹备到稿件撰写及审稿的全程支持。通过录音智记和以稿写稿等功能,满足事务性工作的高频需求,帮助撰稿人节省精力,提高效率,优化工作与生活。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号