Project Icon

awadb

AI原生向量数据库 实时高效易用

AwaDB是一款为AI应用优化的向量数据库,无需复杂设置即可使用。它支持毫秒级实时搜索,基于多年生产经验打造,稳定可靠。AwaDB可本地运行或Docker部署,提供Python SDK和RESTful API,轻松处理文本、图像等非结构化数据的向量嵌入和检索。适用于各类AI应用场景,简化向量数据管理和检索流程。

AwaDB - AI Native Database for embedding vectors

Easily Use - No boring database schema definition. No need to pay attention to vector indexing details.

Realtime Search - Lock free realtime index keeps new data fresh with millisecond level latency. No wait no manual operation.

Stability - AwaDB builds upon over 5 years experience running production workloads at scale using a system called Vearch, combined with best-of-breed ideas and practices from the community.

Run awadb locally on Mac OSX or Linux

First install awadb:

pip3 install awadb

Then use as below:

import awadb
# 1. Initialize awadb client!
awadb_client = awadb.Client()

# 2. Create table
awadb_client.Create("test_llm1") 

# 3. Add sentences, the sentence is embedded with SentenceTransformer by default
#    You can also embed the sentences all by yourself with OpenAI or other LLMs
awadb_client.Add([{'embedding_text':'The man is happy'}, {'source' : 'pic1'}])
awadb_client.Add([{'embedding_text':'The man is very happy'}, {'source' : 'pic2'}])
awadb_client.Add([{'embedding_text':'The cat is happy'}, {'source' : 'pic3'}])
awadb_client.Add([{'embedding_text':'The man is eating'}, {'source':'pic4'}])

# 4. Search the most Top3 sentences by the specified query
query = "The man is happy"
results = awadb_client.Search(query, 3)

# Output the results
print(results)

Here the text is embedded by SentenceTransformer which is supported by Hugging Face
More detailed python local library usage you can read here

Run AwaDB as a service

If you are on the Windows platform or want a awadb service, you can download and deploy the awadb docker. The installation of awadb docker please see here

  • Python Usage

First, Install gRPC and awadb service python client as below:

pip3 install grpcio
pip3 install awadb-client

A simple example as below:

# Import the package and module
from awadb_client import Awa

# Initialize awadb client
client = Awa()

# Add dict with vector to table 'example1'
client.add("example1", {'name':'david', 'feature':[1.3, 2.5, 1.9]})
client.add("example1", {'name':'jim', 'feature':[1.1, 1.4, 2.3]})

# Search
results = client.search("example1", [1.0, 2.0, 3.0])

# Output results
print(results)

# '_id' is the primary key of each document
# It can be specified clearly when adding documents
# Here no field '_id' is specified, it is generated by the awadb server 
db_name: "default"
table_name: "example1"
results {
  total: 2
  msg: "Success"
  result_items {
    score: 0.860000074
    fields {
      name: "_id" 
      value: "64ddb69d-6038-4311-9118-605686d758d9"
    }
    fields {
      name: "name"
      value: "jim"
    }
  }
  result_items {
    score: 1.55
    fields {
      name: "_id"
      value: "f9f3035b-faaf-48d4-a947-801416c005b3"
    }
    fields {
      name: "name"
      value: "david"
    }
  }
}
result_code: SUCCESS

More python sdk for service is here

  • RESTful Usage
# add documents to table 'test' of db 'default', no need to create table first
curl -H "Content-Type: application/json" -X POST -d '{"db":"default", "table":"test", "docs":[{"_id":1, "name":"lj", "age":23, "f":[1,0]},{"_id":2, "name":"david", "age":32, "f":[1,2]}]}' http://localhost:8080/add

# search documents by the vector field 'f' of the value '[1, 1]'
curl -H "Content-Type: application/json" -X POST -d '{"db":"default", "table":"test", "vector_query":{"f":[1, 1]}}' http://localhost:8080/search

More detailed RESTful API is here

What are the Embeddings?

Any unstructured data(image/text/audio/video) can be transferred to vectors which are generally understanded by computers through AI(LLMs or other deep neural networks).

For example, "The man is happy"-this sentence can be transferred to a 384-dimension vector(a list of numbers [0.23, 1.98, ....]) by SentenceTransformer language model. This process is called embedding.

More detailed information about embeddings can be read from OpenAI

Awadb uses Sentence Transformers to embed the sentence by default, while you can also use OpenAI or other LLMs to do the embeddings according to your needs.

Get involved

License

Apache 2.0

Community

Join the AwaDB community to share any problem, suggestion, or discussion with us:

项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

白日梦AI

白日梦AI提供专注于AI视频生成的多样化功能,包括文生视频、动态画面和形象生成等,帮助用户快速上手,创造专业级内容。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

讯飞绘镜

讯飞绘镜是一个支持从创意到完整视频创作的智能平台,用户可以快速生成视频素材并创作独特的音乐视频和故事。平台提供多样化的主题和精选作品,帮助用户探索创意灵感。

Project Cover

讯飞文书

讯飞文书依托讯飞星火大模型,为文书写作者提供从素材筹备到稿件撰写及审稿的全程支持。通过录音智记和以稿写稿等功能,满足事务性工作的高频需求,帮助撰稿人节省精力,提高效率,优化工作与生活。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号