Project Icon

BERT-Emotions-Classifier

情感多标签分类的高效工具

BERT-Emotions-Classifier是一个专注于多标签情感分类的BERT模型,基于sem_eval_2018_task_1数据集训练,能够识别愤怒、恐惧、喜悦等多种情感。适用于社交媒体和客户评论中的情感分析以及基于情感的内容推荐。尽管存在情感类别和输入长度的限制,但该模型在情感分析中表现优异,需注意可能的偏差问题。

hubert-base-ch-speech-emotion-recognition - 中文情感音频识别模型,使用CASIA数据集及HuBERT预训练
CASIA数据集GithubHuggingfacehubert-base-ch-speech-emotion-recognition开源项目情感识别模型音频分类高准确率
项目采用TencentGameMate/chinese-hubert-base模型,在CASIA数据集上进行训练,实现情感识别。CASIA数据集包括6种情感的1200个样本,优化了训练参数,如AdamW优化器和Step_LR学习率调度。模型在测试集上的准确率为97.2%,适用于多种情感分析应用场景。
sentiment-roberta-large-english - RoBERTa微调的通用英文情感分析模型
GithubHuggingfaceRoBERTaSiEBERT开源项目情感分析机器学习模型自然语言处理
sentiment-roberta-large-english是一个基于RoBERTa-large的微调模型,用于英文文本的二元情感分析。该模型在15个不同来源的数据集上进行了训练和评估,提高了对各种文本类型的泛化能力。在新数据上,其表现优于仅在单一类型文本上训练的模型,平均准确率为93.2%。模型可通过Hugging Face pipeline快速部署,也可作为进一步微调的基础。
bert-base-turkish-sentiment-cased - 高精度的土耳其语言情感分析BERT模型
BERTurkGithubHuggingface土耳其语开源项目情感分析数据集模型模型训练
该模型基于BERTurk,专为土耳其语言的情感分析设计,结合了电影评论、产品评论和推特数据集,实现了95.4%的准确度。适用于多种土耳其语文本情感分析场景,项目由Savas Yildirim发布于Hugging Face平台,并采用了先进的特征表示与融合技术。使用者需遵循引用要求以符合合规标准。
bert-base-uncased-yelp-polarity - BERT模型基于Yelp评论数据集实现高准确率情感分析
GithubHuggingfaceTextAttackbert-base-uncased序列分类开源项目模型模型微调自然语言处理
该项目基于bert-base-uncased模型,利用TextAttack框架和yelp_polarity数据集进行微调,构建了一个文本情感分类器。经过5轮训练,模型在评估集上达到96.99%的准确率。支持最大256的序列长度,专门用于Yelp评论的情感分析。模型采用16的批次大小和5e-05的学习率,展现出优秀的性能表现。
bert-toxic-comment-classification - BERT模型在毒性评论分类中的应用与实现
BERTGithubHuggingface开源项目文本分类机器学习模型模型训练毒性评论分类
该项目基于BERT模型,通过fine-tuning实现毒性评论的智能分类。模型在1500行测试数据上达到0.95 AUC,采用Kaggle竞赛数据集训练。项目提供简洁的Python接口,便于开发者快速集成文本毒性检测功能。适用于构建在线社区、内容平台的评论审核系统。
twitter-roberta-base-emotion - 基于RoBERTa的推特情绪识别与分析模型
GithubHuggingfaceRoBERTa开源项目情感识别推特数据分析模型深度学习自然语言处理
twitter-roberta-base-emotion是一个基于RoBERTa架构的情绪识别模型,经过5800万条推特数据训练。模型可识别喜悦、乐观、愤怒和悲伤等情绪类型,并通过TweetEval基准进行了微调。支持Python接口调用,适用于文本情感分析任务。
t5-base-finetuned-emotion - 基于T5模型的情感识别技术
GithubHuggingfaceT5下游任务传输学习开源项目情感数据集情感识别模型
这个项目展示了T5模型在情感识别中的应用,通过一个高质量的情感数据集进行分类。经过精细调优,T5模型能够识别六种情感:悲伤、快乐、爱、愤怒、恐惧和惊讶,精确度和召回率都非常优秀。该模型可用于情感分析任务,准确率高达93%,展现了自然语言处理领域的先进技术。
finbert - 针对金融领域的BERT情感分析预训练模型
BERTFinBERTGithubHuggingfaceProsus开源项目模型自然语言处理金融情感分析
FinBERT是一个针对金融文本情感分析的预训练NLP模型。该模型基于BERT架构,通过在大规模金融语料库上进行训练和微调,专门用于金融领域的情感分类。FinBERT能够为文本输出正面、负面或中性三种情感标签的概率分布,旨在提升金融文本分析的准确性,为投资决策和市场分析提供客观依据。
prediksi-emosi-indobert - IndoBERT模型应用于印尼语文本情绪预测的工具
GithubHuggingfaceIndoBERTPrediksi Emosi App开源项目情感分析模型模型预测预训练模型
Prediksi Emosi App 利用预训练的IndoBERT模型进行印尼语情绪分析。应用程序接受用户输入的句子或段落,预测其可能的情绪,如愤怒、悲伤、快乐、爱、恐惧和厌恶,并以百分比格式展示结果,让用户轻松理解文本的情绪特征,便于分析和交互。
distilbert-imdb - IMDB电影评论情感分析模型实现92.8%准确率
DistilBERTGithubHuggingfaceIMDB数据集准确率开源项目文本分类模型模型微调
该文本分类模型通过在IMDB数据集上对distilbert-base-uncased进行微调而来,主要用于电影评论情感分析。模型基于Transformers 4.15.0和PyTorch 1.10.0开发,使用Adam优化器和线性学习率调度器,经过单轮训练在评估集上达到92.8%的准确率。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号