Project Icon

prediksi-emosi-indobert

IndoBERT模型应用于印尼语文本情绪预测的工具

Prediksi Emosi App 利用预训练的IndoBERT模型进行印尼语情绪分析。应用程序接受用户输入的句子或段落,预测其可能的情绪,如愤怒、悲伤、快乐、爱、恐惧和厌恶,并以百分比格式展示结果,让用户轻松理解文本的情绪特征,便于分析和交互。

twitter-roberta-base-sentiment - RoBERTa模型实现Twitter推文情感分析
GithubHuggingfaceTweetEvalTwitterroBERTa开源项目情感分析模型自然语言处理
这是一个基于RoBERTa-base的Twitter情感分析模型,通过5800万条推文训练和TweetEval基准微调而成。模型可将英文推文分类为负面、中性和正面三种情感。项目提供了包含文本预处理、模型加载和情感预测的使用示例。此外,还有一个基于更多最新推文训练的改进版本,可提供更精确的情感分析。该开源项目为自然语言处理研究者和开发者提供了实用的Twitter情感分析工具。
bert-base-personality - BERT模型驱动的Big Five人格特质预测工具
BERTGithubHuggingface人工智能大五人格开源项目性格预测模型迁移学习
bert-base-personality是一个利用BERT模型进行人格特质预测的开源工具。通过迁移学习和微调技术,该模型能够基于文本输入准确预测Big Five人格特质中的外向性、神经质、宜人性、尽责性和开放性五个维度。这个项目不仅展示了迁移学习在机器学习领域的应用潜力,同时也凸显了BERT模型在人格分析任务中的卓越表现。
bert-toxic-comment-classification - BERT模型在毒性评论分类中的应用与实现
BERTGithubHuggingface开源项目文本分类机器学习模型模型训练毒性评论分类
该项目基于BERT模型,通过fine-tuning实现毒性评论的智能分类。模型在1500行测试数据上达到0.95 AUC,采用Kaggle竞赛数据集训练。项目提供简洁的Python接口,便于开发者快速集成文本毒性检测功能。适用于构建在线社区、内容平台的评论审核系统。
hubert-large-speech-emotion-recognition-russian-dusha-finetuned - HuBERT模型在俄语语音情感识别上的应用与优化
GithubHuBERTHuggingface俄语开源项目微调模型语音情感识别预训练模型
该项目利用DUSHA数据集对HuBERT模型进行微调,实现了俄语语音情感识别。经优化后的模型在测试集上表现突出,准确率达0.86,宏F1分数为0.81,超越了数据集基准。模型能够识别中性、愤怒、积极、悲伤等情绪类型。项目还提供了简洁的使用示例代码,便于研究人员和开发者将其集成到语音情感分析任务中。
IndicBERTv2-MLM-only - 支持23种印度语言和英语的大规模多语言预训练模型
GithubHuggingfaceIndicBERT印度语言多语言模型开源项目机器学习模型自然语言处理
IndicBERTv2-MLM-only是一个支持23种印度语言和英语的大规模多语言预训练模型。该模型基于IndicCorp v2数据集训练,包含2.78亿参数,采用掩码语言模型(MLM)目标。在IndicXTREME基准测试中,模型展现出优秀的多语言和零样本迁移能力。作为印度语言自然语言处理的重要资源,IndicBERTv2-MLM-only有望推动相关研究,缩小印度语言在NLP领域的差距。
emotion2vec - 通用语音情感表示模型开源实现
Githubemotion2vec开源项目情感表征特征提取自监督预训练语音情感识别
emotion2vec是一个开源的语音情感表示模型,采用自监督预训练方法提取跨任务、跨语言和跨场景的通用情感特征。该模型在IEMOCAP等数据集上取得了领先性能,并在多语言和多任务上展现出优异表现。项目开源了预训练模型、特征提取工具和下游任务训练脚本,为语音情感分析研究提供了有力支持。
distilbert-base-uncased-finetuned-sst-2-english - JavaScript情感分析中的ONNX优化
GithubHuggingfaceONNXTransformers.jsWebML变压器开源项目情感分析模型
基于ONNX权重实现Transformers.js的兼容性,能够快速执行情感分析。安装Transformers.js库后,即可使用预训练模型进行高效的文本情感分析。这种方法有效提高了模型运行速度,并支持WebML,是JavaScript开发者的重要工具。
rubert-base-cased-sentiment - RuBERT模型实现俄语文本三分类情感分析
BERT模型DeepPavlovGithubHuggingface俄语文本开源项目情感分析模型自然语言处理
该项目基于DeepPavlov的RuBERT模型,通过35万多条多源俄语文本进行微调,实现了中性、积极和消极三分类的情感分析功能。模型支持transformers库调用,便于集成应用。训练语料涵盖社交媒体、产品评论等多个领域,提高了模型的通用性。
bert-base-uncased-yelp-polarity - BERT模型基于Yelp评论数据集实现高准确率情感分析
GithubHuggingfaceTextAttackbert-base-uncased序列分类开源项目模型模型微调自然语言处理
该项目基于bert-base-uncased模型,利用TextAttack框架和yelp_polarity数据集进行微调,构建了一个文本情感分类器。经过5轮训练,模型在评估集上达到96.99%的准确率。支持最大256的序列长度,专门用于Yelp评论的情感分析。模型采用16的批次大小和5e-05的学习率,展现出优秀的性能表现。
distilbert-base-uncased-finetuned-sst-2-english - 英语文本情感分析的高精度模型
DistilBERTGithubHuggingface偏见开源项目文本分类模型精度
模型由Hugging Face团队微调,适用于SST-2情感分析任务,精度达到91.3%。针对英语文本特性设计,适合单标签分类。适用Python和Transformers库,易于集成。模型可实现高效特征提取,但可能在特定背景下产生偏差,应在应用前充分测试。开放源代码,Apache-2.0许可支持二次开发。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

白日梦AI

白日梦AI提供专注于AI视频生成的多样化功能,包括文生视频、动态画面和形象生成等,帮助用户快速上手,创造专业级内容。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

讯飞绘镜

讯飞绘镜是一个支持从创意到完整视频创作的智能平台,用户可以快速生成视频素材并创作独特的音乐视频和故事。平台提供多样化的主题和精选作品,帮助用户探索创意灵感。

Project Cover

讯飞文书

讯飞文书依托讯飞星火大模型,为文书写作者提供从素材筹备到稿件撰写及审稿的全程支持。通过录音智记和以稿写稿等功能,满足事务性工作的高频需求,帮助撰稿人节省精力,提高效率,优化工作与生活。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号