Project Icon

Mistral-Large-Instruct-2407-GGUF

Mistral-Large-Instruct-2407模型的多语言量化方法与文件选择建议

Mistral-Large-Instruct-2407项目提供了多种语言支持的模型量化版本。通过llama.cpp工具,用户可以根据不同的RAM和VRAM需求进行量化。文章详细介绍每种量化文件的特性与性能建议,帮助用户根据硬件条件选取适合的文件,实现模型的快速或高质量运行。推荐关注K-quant与I-quant格式文件以在性能与速度间取得平衡。

KVQuant - 提升长上下文推理效率的KV缓存量化方法
GithubKVQuantLLaMA-7B低精度量化大模型开源项目长上下文长度推断
KVQuant通过精确的低精度量化技术显著提升长上下文长度推理的效率。其创新包括每通道的RoPE前关键量化和非均匀量化,以应对不同LLM中缓存的KV值模式。KVQuant支持在单个A100-80GB GPU上进行LLaMA-7B模型的1M上下文长度推理,甚至在8-GPU系统上支持长达10M上下文长度,从而减少推理过程中KV缓存的内存瓶颈,并通过并行topK支持和注意力感知量化等多项改进提升推理性能。
LoftQ - 大型语言模型低资源量化微调新方法
GithubLoRALoftQ大语言模型开源项目微调量化
LoftQ是一种为大型语言模型设计的量化微调方法。它通过寻找最佳的量化LoRA初始化,实现有限GPU资源下的高效模型微调。LoftQ支持LLAMA、Falcon、Mistral等主流模型,提供相关工具和示例代码。在WikiText-2和GSM8K等任务上,LoftQ展现出优秀性能,为低资源环境中的LLM应用开发创造了新可能。
mistral-inference - 高效部署和使用Mistral模型的实用指南
AI模型GithubMistral Inference代码安装使用指南开源项目模型下载
该项目提供了简洁高效的代码库,支持Mistral 7B、8x7B和8x22B模型的部署和运行。通过命令行界面和Python接口,可以方便地下载、安装和测试模型,并与其互动。项目包含详细的使用示例和多GPU环境的部署指南,为开发者和研究人员提供了可靠的支持。
Chinese-Mixtral - 使用Sparse MoE架构的中文Mixtral模型
Chinese-MixtralGithubMixtral大模型量化开源项目指令精调稀疏混合专家模型
模型基于Mistral.ai的Mixtral模型开发,经过中文增量训练与指令精调,具备处理长文本(原生支持32K上下文,实测可达128K)的能力。包括中文Mixtral基础模型与指令模型,显著提升数学推理和代码生成性能。通过llama.cpp进行量化推理,最低仅需16G内存。开源提供代码、训练脚本与详细教程,支持多种推理和部署工具,适合个人电脑本地快速部署量化模型。
fsdp_qlora - 量化技术实现大型语言模型的高效训练
FSDPGithubLLMQLoRA开源项目微调量化
fsdp_qlora项目结合FSDP与量化LoRA,实现了在有限显存GPU上高效训练大型语言模型。支持HQQ和bitsandbytes的4位量化、LoRA、DoRA等多种策略,大幅降低内存占用。项目提供详细文档,便于快速上手使用。该方法使在消费级GPU上训练70B参数模型成为可能,为大模型研究提供了实用工具。
llm-awq - 激活感知权重量化技术实现大语言模型高效压缩与加速
AWQGithubLLM开源项目模型量化视觉语言模型边缘设备
AWQ是一种高效的大语言模型低比特权重量化技术,支持INT3/4量化,适用于指令微调和多模态模型。它提供预计算模型库、内存高效的4位线性层和快速推理CUDA内核。AWQ使TinyChat可在边缘设备上实现大模型高效本地推理。该技术已被Google、Amazon等采用,并获MLSys 2024最佳论文奖。
LLM-FineTuning-Large-Language-Models - LLM微调实践与技术应用指南
Fine-tuningGithubLLMPEFTQLoRA开源项目量化
本项目介绍了如何使用ORPO、QLoRA、GPTQ等技术对大型语言模型(LLM)进行微调,包含具体实例和代码片段。项目还提供与这些技术相关的YouTube视频链接,提供全面的学习资料。此外,项目还包含各类实用工具和技术说明,帮助用户更好地理解和应用这些前沿技术。适合有一定编程基础的研究人员和开发者参考。
Mistral 7B - Mistral 7B及衍生模型全面指南
AI工具Mistral 7B人工智能大语言模型开源模型自然语言处理
本站聚焦Mistral 7B开源语言模型,提供模型介绍、部署指南和在线体验。汇集微调版本导航、使用教程和研究动态,是Mistral 7B相关资源的综合参考平台。
OmniQuant - 简便高效的大型语言模型量化技术
GithubLLaMAOmniQuant大语言模型开源项目量化高效QAT
OmniQuant是一种高效的量化技术,支持多种大型语言模型(LLM)的权重和激活量化,包括LLaMa和OPT等。其实现了4位及更低精度的权重量化,并通过MLC-LLM优化在多种硬件设备上的推理性能和内存占用。此外,项目还支持Mixtral和Falcon模型的压缩应用,大幅降低内存需求,提高运行效率。
airllm - 在单个4GB GPU上运行70B大模型,无需量化和蒸馏
AirLLMGithubLlama3.1大语言模型开源项目推理优化模型压缩
AirLLM优化了推理内存使用,使70B大模型能在单个4GB GPU上运行,无需量化、蒸馏或剪枝。同时,8GB显存可运行405B的Llama3.1。支持多种模型压缩方式,推理速度可提升至3倍。兼容多种大模型,提供详细配置和案例,支持在MacOS上运行。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

白日梦AI

白日梦AI提供专注于AI视频生成的多样化功能,包括文生视频、动态画面和形象生成等,帮助用户快速上手,创造专业级内容。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

讯飞绘镜

讯飞绘镜是一个支持从创意到完整视频创作的智能平台,用户可以快速生成视频素材并创作独特的音乐视频和故事。平台提供多样化的主题和精选作品,帮助用户探索创意灵感。

Project Cover

讯飞文书

讯飞文书依托讯飞星火大模型,为文书写作者提供从素材筹备到稿件撰写及审稿的全程支持。通过录音智记和以稿写稿等功能,满足事务性工作的高频需求,帮助撰稿人节省精力,提高效率,优化工作与生活。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号