Project Icon

Qwen2.5-32B-AGI-GGUF

Qwen2.5-32B-AGI模型量化与性能优化概述

介绍Qwen2.5-32B-AGI在Llamacpp中的量化模型,强调文本生成性能的提升。多种量化格式(如Q8_0,Q6_K_L)满足不同需求,结合embed/output量化,适应低RAM环境。提供模型选择、下载与运行指南,含基于ARM芯片的性能优化方法。

Qwen2.5-32B-Instruct-GGUF - 全面汇总32B大语言模型量化版本 多设备支持
GGUFGithubHuggingfaceQwen2.5-32B-Instruct大语言模型开源项目推理优化模型量化
本项目提供Qwen2.5-32B-Instruct模型的多种量化版本,精度从f16到IQ2_XXS,文件大小9GB至65GB不等。量化模型适用于CPU、GPU等设备,可根据硬件配置选择。项目包含详细的模型选择指南和下载说明,便于用户使用这个32B参数的大语言模型。特别推荐Q6_K、Q5_K和Q4_K系列,以及新型IQ系列量化版本。
CodeQwen1.5-7B-GGUF - 丰富的量化模型选择,多平台优化性能
CodeQwen1.5-7BGithubHugging FaceHuggingface内存需求开源项目模型模型质量量化
通过llama.cpp工具实现多量化模型的生成,CodeQwen1.5系列提供不同文件大小和质量选项,适用于各种设备资源和性能需求。推荐选择高质量Q6_K和Q5_K_M格式,平衡性能与存储空间。该项目适合RAM和VRAM有限的用户,并支持多种格式在不同硬件平台上运行。新方法如I-quants提高性能输出,但与Vulcan不兼容,适用于Nvidia的cuBLAS和AMD的rocBLAS。丰富的特性矩阵便于深入比较选择。
Qwen2-0.5B-Instruct-GGUF - 高性能轻量级开源语言模型 支持多种量化等级
GGUF格式GithubHuggingfaceQwen2开源项目模型自然语言处理语言模型量化模型
Qwen2-0.5B-Instruct模型提供多种GGUF格式量化版本,从q2_k到q8_0不等。模型基于Transformer架构,使用SwiGLU激活和改进的分组查询注意力,支持多语言及代码处理。经过大规模预训练和监督微调,可通过llama.cpp部署,支持OpenAI API兼容调用。在WikiText困惑度测试中表现优秀,为轻量级开源语言模型应用提供了便利选择。
Qwen2.5-72B-Instruct-GGUF - 大语言模型多种量化版本集合 适配不同硬件配置
GithubHuggingfaceQwen2.5-72Bllama.cpp人工智能模型内存优化开源项目模型模型量化
该项目提供了Qwen2.5-72B-Instruct模型的18种量化版本,文件大小范围为23GB至77GB。使用llama.cpp的最新量化技术,包括K-quants和I-quants系列。所有版本均经imatrix优化,并更新了上下文长度设置和分词器。项目还提供了详细的性能对比和设备兼容性指南,方便用户根据自身硬件配置选择合适版本。这些模型特别适合在LM Studio等推理引擎上运行。
Qwen2.5-32B-AGI-Q6_K-GGUF - 通量计算优化的高性能大语言模型本地部署
GGUFGithubHuggingfaceQwen2.5llama.cpp大型语言模型开源项目模型模型转换
该项目提供了GGUF格式转换的Qwen2.5-32B-AGI模型,支持通过llama.cpp实现本地高效部署和推理。模型采用Q6_K量化方案,在维持性能的同时显著减少资源消耗。项目支持通过brew快速安装llama.cpp或源码编译部署,并提供命令行界面和服务器模式两种运行选项,为本地化大模型应用提供灵活解决方案。
Qwen2.5-32B-Instruct-GPTQ-Int8 - 开源多语言大模型Qwen2.5 32B量化版支持超长文本处理
GithubHuggingfaceQwen2.5多语言支持大语言模型开源项目文本生成模型量化
Qwen2.5-32B-Instruct-GPTQ-Int8是Qwen2.5系列的量化版本,通过GPTQ 8位量化技术实现高效部署。模型支持29种语言交互,具备128K超长上下文理解和8K文本生成能力。在编程、数学计算、文本理解等任务中表现优异,同时对结构化数据处理能力显著提升。该模型采用325亿参数规模,适合在资源受限环境中运行
Qwen2.5-Math-72B-Instruct-GGUF - Llamacpp在Qwen2.5-Math代码量化中的应用
ARM芯片GithubHugging FaceHuggingfaceQwen2.5-Math-72B-Instruct开源项目性能模型量化
项目应用llama.cpp对Qwen2.5-Math模型进行量化,提供多种量化格式以适应不同硬件配置。更新包括改进的分词器,涵盖高至极低质量的量化文件,适用于不同RAM和VRAM需求,并支持在ARM芯片上运行。使用K-quant和I-quant等量化方法,有助于优化模型性能与速度。下载和安装可通过huggingface-cli实现,灵活快捷。
Qwen2.5-7B-Instruct-GPTQ-Int8 - Qwen2.5模型实现多语言支持与优化长文本处理
GithubHuggingfaceQwen2.5多语言支持大模型开源项目指令微调模型量化模型
Qwen2.5模型具备多语言支持和改良的长文本处理能力,增强了编程、数学及指令执行的表现。其GPTQ-8位量化模型支持最长128K上下文与最高生成8192个令牌,提供因果语言模型架构,适合多领域应用。支持29种语言,包括中文、英语和法语,为开发者提供多样化的功能。
Qwen2.5-72B-Instruct-GPTQ-Int4 - Qwen2.5-72B模型4位量化版支持128K长文本及多语言处理
GithubHuggingfaceQwen2.5多语言支持大语言模型开源项目模型量化长文本处理
Qwen2.5-72B指令微调模型通过GPTQ技术实现4位量化,降低了模型部署门槛。模型支持中英等29种语言,具有出色的代码开发和数学运算能力,可处理128K tokens长度的输入文本并生成8K tokens的输出。基于RoPE等技术的transformers架构使其在长文本理解、结构化数据处理等任务中表现稳定。
Qwen2.5-7B-Instruct-GGUF - 开源大语言模型GGUF量化版支持多语言和128K长文本处理
GithubHuggingfaceQwen2.5人工智能多语言支持大语言模型开源项目模型深度学习
Qwen2.5-7B指令模型GGUF量化版是Qwen2.5系列的一部分,采用transformers架构,拥有7.61B参数。该模型支持29种语言,可处理128K文本上下文,并提供q2至q8多种量化精度选项。相比前代,模型在知识储备、代码、数学能力、指令执行、长文本生成和结构化数据理解等方面均有显著提升。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

白日梦AI

白日梦AI提供专注于AI视频生成的多样化功能,包括文生视频、动态画面和形象生成等,帮助用户快速上手,创造专业级内容。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

讯飞绘镜

讯飞绘镜是一个支持从创意到完整视频创作的智能平台,用户可以快速生成视频素材并创作独特的音乐视频和故事。平台提供多样化的主题和精选作品,帮助用户探索创意灵感。

Project Cover

讯飞文书

讯飞文书依托讯飞星火大模型,为文书写作者提供从素材筹备到稿件撰写及审稿的全程支持。通过录音智记和以稿写稿等功能,满足事务性工作的高频需求,帮助撰稿人节省精力,提高效率,优化工作与生活。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号