Project Icon

Replete-Coder-Llama3-8B-GGUF

基于llama.cpp优化的高效量化方法提升文本生成性能

该开源项目利用llama.cpp进行模型量化,适用于HumanEval和AI2推理挑战等任务,提供多种量化选项如Q8_0和Q6_K,适应不同内存要求,同时优化性能表现。I-quant量化在低于Q4时表现良好,用户可依据自己的设备内存和GPU VRAM选择合适的量化格式,通过huggingface-cli便捷获取所需文件。

KVQuant - 提升长上下文推理效率的KV缓存量化方法
GithubKVQuantLLaMA-7B低精度量化大模型开源项目长上下文长度推断
KVQuant通过精确的低精度量化技术显著提升长上下文长度推理的效率。其创新包括每通道的RoPE前关键量化和非均匀量化,以应对不同LLM中缓存的KV值模式。KVQuant支持在单个A100-80GB GPU上进行LLaMA-7B模型的1M上下文长度推理,甚至在8-GPU系统上支持长达10M上下文长度,从而减少推理过程中KV缓存的内存瓶颈,并通过并行topK支持和注意力感知量化等多项改进提升推理性能。
InferLLM - 轻量化语言模型推理框架,兼容多种模型格式和设备
GithubInferLLMllama.cpp多模型兼容开源项目模型推理高效率
InferLLM 是一个高效简洁的语言模型推理框架,源于 llama.cpp 项目。主要特点包括结构简单、高性能、易于上手,并支持多模型格式。目前兼容 CPU 和 GPU,可优化 Arm、x86、CUDA 和 riscv-vector,并支持移动设备部署。InferLLM 引入了专有 KVstorage 类型以简化缓存和管理,适合多种应用场景。最新支持的模型包括 LLama-2-7B、ChatGLM、Alpaca 等。
OmniQuant - 简便高效的大型语言模型量化技术
GithubLLaMAOmniQuant大语言模型开源项目量化高效QAT
OmniQuant是一种高效的量化技术,支持多种大型语言模型(LLM)的权重和激活量化,包括LLaMa和OPT等。其实现了4位及更低精度的权重量化,并通过MLC-LLM优化在多种硬件设备上的推理性能和内存占用。此外,项目还支持Mixtral和Falcon模型的压缩应用,大幅降低内存需求,提高运行效率。
LoftQ - 大型语言模型低资源量化微调新方法
GithubLoRALoftQ大语言模型开源项目微调量化
LoftQ是一种为大型语言模型设计的量化微调方法。它通过寻找最佳的量化LoRA初始化,实现有限GPU资源下的高效模型微调。LoftQ支持LLAMA、Falcon、Mistral等主流模型,提供相关工具和示例代码。在WikiText-2和GSM8K等任务上,LoftQ展现出优秀性能,为低资源环境中的LLM应用开发创造了新可能。
nano-llama31 - 轻量级Llama 3.1架构实现 提供训练微调和推理功能
AI模型GithubLlama 3.1nanoGPT开源项目微调深度学习
nano-llama31是一个轻量级的Llama 3.1架构实现,无需额外依赖。该项目聚焦8B基础模型,提供训练、微调和推理功能。相比Meta官方和Hugging Face的版本,代码更为精简。目前正在开发中,已支持Tiny Stories数据集的微调。未来计划增加混合精度训练、分布式数据并行等功能,并考虑扩展到更大规模的Llama 3模型。
llama2.rs - Rust开发的高效Llama2 CPU推理库
CPU推理GithubLlama2RustSIMD开源项目量化
llama2.rs是一个用Rust开发的Llama2 CPU推理库,专注于提供高性能的推理能力。项目支持4位GPT-Q量化、批量预填充提示标记、SIMD加速和内存映射等技术,实现了70B模型的即时加载。通过Python API,开发者可在普通台式机上运行70B Llama2模型(1 token/s)和7B模型(9 tokens/s)。该项目为大规模语言模型的CPU推理提供了高效且灵活的开源解决方案。
llama3-chinese - 基于Meta-Llama-3-8B的中英双语大语言模型
GithubLlama3-Chinese人工智能大语言模型开源项目自然语言处理
Llama3-Chinese是基于Meta-Llama-3-8B训练的中英双语大语言模型。该项目使用高质量多语言数据和先进训练方法,提升了模型的对话能力。项目提供完整的模型使用指南,包括下载、合并、推理和部署,并配有Web和CLI演示,方便研究者和开发者使用。
BitNet-Transformers - 缩放1-bit大语言模型,提高GPU内存利用率
BitNet-TransformersGithubHuggingfaceLLama(2)Wikitext-103pytorch开源项目
BitNet-Transformers项目使用Llama (2)架构,并通过1-bit权重缩放技术,实现对大型语言模型的高效训练和推理。该项目基于Huggingface Transformers,显著降低了GPU内存占用,从原始LLAMA的250MB减少到BitNet模型的最低要求。用户可通过wandb实时追踪训练进度,并在Wikitext-103上进行训练。项目提供了详细的开发环境配置和训练步骤指南,为研究者和开发者提供有力支持。
Llama3-Chinese-Chat - 基于Llama 3的中英双语优化大语言模型
ChineseGithubLlama3人工智能开源项目自然语言处理语言模型
Llama3-Chinese-Chat项目基于Meta-Llama-3-8B-Instruct模型开发,采用ORPO方法优化训练,大幅提升中英双语交互能力。该模型具备角色扮演、工具使用等功能,提供多种版本选择。最新v2.1版本在数学、角色扮演和函数调用方面性能显著提升,训练数据集扩充至10万对。项目同时提供Ollama模型和量化版本,便于快速部署使用。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号