Project Icon

Replete-LLM-V2.5-Qwen-7b-GGUF

Qwen-7b模型GGUF量化版本集合 适配多种硬件配置

Replete-LLM-V2.5-Qwen-7b-GGUF是经LLAMA.cpp量化处理的Qwen-7b模型系列,提供24种不同量化版本。从15.24GB的F16到2.78GB的IQ2_M,涵盖多种规格以适应不同硬件。支持CPU和GPU部署,并为ARM架构优化。采用imatrix量化方案,附有详细性能说明,便于选择合适版本。

Qwen2.5-14B-Instruct-GGUF - 多语言支持的大规模语言模型 具备结构化数据处理能力
GithubHuggingfaceLM StudioQwen2.5多语言支持大语言模型开源项目模型量化模型
Qwen2.5-14B-Instruct-GGUF是一款多语言大规模语言模型,由Qwen团队开发。模型支持128k tokens长文本处理,经18T tokens训练,强化了结构化数据处理能力。支持中英法等29种以上语言。bartowski提供的GGUF量化版本基于llama.cpp,提高了模型部署效率。
DeepSeek-Coder-V2-Lite-Instruct-GGUF - 高性能代码模型的多版本量化优化支持多种硬件推理应用
DeepSeek-CoderGithubHuggingface人工智能代码生成开源项目模型模型压缩量化模型
本项目针对DeepSeek-Coder-V2-Lite-Instruct模型进行量化优化,提供20多种GGUF格式文件,大小从6GB到17GB不等。采用llama.cpp的imatrix技术实现高效压缩,同时保持模型性能。用户可根据硬件条件选择适合的版本,支持NVIDIA、AMD等平台的深度学习推理。
Qwen2.5-Math-72B-Instruct-GGUF - Llamacpp在Qwen2.5-Math代码量化中的应用
ARM芯片GithubHugging FaceHuggingfaceQwen2.5-Math-72B-Instruct开源项目性能模型量化
项目应用llama.cpp对Qwen2.5-Math模型进行量化,提供多种量化格式以适应不同硬件配置。更新包括改进的分词器,涵盖高至极低质量的量化文件,适用于不同RAM和VRAM需求,并支持在ARM芯片上运行。使用K-quant和I-quant等量化方法,有助于优化模型性能与速度。下载和安装可通过huggingface-cli实现,灵活快捷。
DeepSeek-Coder-V2-Lite-Base-GGUF - 文本生成量化模型的高效选择方案
DeepSeek-Coder-V2-Lite-BaseGithubHuggingfacegguf格式开源项目文件下载模型量化高质量模型
该项目通过llama.cpp和imatrix技术对文本生成模型进行量化处理,为不同硬件配置提供优化选择。模型文件允许根据RAM和VRAM大小选择最佳方案,从而提升运行效率。K-quants在多数应用中表现理想,而I-quants提供更优性能但在硬件兼容性上有特定要求。项目提供的工具和文档为用户在进行文本生成任务的过程中提供指导,帮助选择兼顾速度与质量的量化模型。
Midnight-Miqu-70B-v1.5-i1-GGUF - Midnight-Miqu-70B-v1.5量化模型:优化AI实施的多样化策略
GithubHuggingfaceMidnight-Miqu-70B-v1.5变压器库合并工具开源项目模型模型使用量化
此项目提供Midnight-Miqu-70B-v1.5的多种GGUF量化文件,采用权重和imatrix量化,支持多种规格和类型如IQ1至IQ4及Q5、Q6,适应速度、质量和空间需求的平衡。用户可参考TheBloke的README获取操作指南,适合寻求优化AI模型效率的开发者,助力高效机器学习模型部署。
NuExtract-v1.5-GGUF - NuExtract-v1.5模型多种GGUF量化版本集合
GGUFGithubHuggingfaceNuExtract-v1.5llama.cpp开源项目模型模型下载量化
本项目提供NuExtract-v1.5模型的多种GGUF量化版本,涵盖从高质量Q8_0到小型IQ2_M在内的多种类型。项目详细介绍了各版本特点,并根据硬件配置和性能需求提供选择建议。此外,还包含模型下载、使用说明和优化技巧,方便用户根据实际情况选择最适合的版本。
Qwen2.5-32B-AGI-Q6_K-GGUF - 通量计算优化的高性能大语言模型本地部署
GGUFGithubHuggingfaceQwen2.5llama.cpp大型语言模型开源项目模型模型转换
该项目提供了GGUF格式转换的Qwen2.5-32B-AGI模型,支持通过llama.cpp实现本地高效部署和推理。模型采用Q6_K量化方案,在维持性能的同时显著减少资源消耗。项目支持通过brew快速安装llama.cpp或源码编译部署,并提供命令行界面和服务器模式两种运行选项,为本地化大模型应用提供灵活解决方案。
Qwen2.5-3B-Instruct-GGUF - 高性能3B参数量GGUF格式大语言模型,支持多语言、长文本理解与结构化输出
GGUF格式GithubHuggingfaceQwen2.5人工智能大语言模型开源项目模型自然语言处理
Qwen2.5-3B-Instruct-GGUF是一款基于Qwen2.5系列的指令微调模型,参数量为3B。该模型支持29种语言,具备出色的代码和数学处理能力。它可处理128K tokens的上下文,生成长度达8K tokens的文本。模型采用transformers架构,整合了RoPE和SwiGLU等技术,并提供多种量化版本。其优势在于强大的指令跟随能力、结构化数据理解和JSON输出能力,适用于多样化的系统提示词场景。
Qwen2-1.5B-Instruct-IMat-GGUF - 运用量化技术优化Qwen2-1.5B-Instruct模型的文本生成能力
GithubHuggingfaceIMatrixQwen2-1.5B-Instruct开源项目文本生成模型量化
项目利用llama.cpp对Qwen2-1.5B-Instruct模型进行量化,支持从8bit到1bit的多种位数及IMatrix数据集。这种方法能减少模型体积且保持性能多样,适用于不同文本生成任务。用户可使用huggingface-cli简便下载及合并文件,以满足不同应用需求。项目因其灵活性及高效性,适宜不同计算资源的使用者,为其提供多样选择。
Qwen2.5-0.5B-Instruct-GGUF - 支持29种语言的多功能语言处理模型
GithubHuggingfaceQwen2.5多语言支持大语言模型开源项目模型生成长文本量化
Qwen2.5系列大幅提升了编码、数学和指令跟随能力,支持长上下文的多语言处理,覆盖29种语言。该模型以GGUF格式提供因果语言模型,支持预训练和后训练,非常适合灵活的对话设计。其指令调整能力强,能有效应对多样化的系统提示,尤其在生成结构化输出(如JSON)方面表现突出。模型具备0.49B参数,24层结构,支持多种量化方法。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

Project Cover

天工AI音乐

天工AI音乐平台支持音乐创作,特别是在国风音乐领域。该平台适合新手DJ和音乐爱好者使用,帮助他们启动音乐创作,增添生活乐趣,同时发现和分享新音乐。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号