Project Icon

llama-3-cat-8b-instruct-v1-GGUF

文本生成模型的量化选择

此项目通过llama.cpp进行模型量化,以满足多样化的硬件限制需求。量化文件选择从Q8_0到IQ1_S不等,推荐使用Q6_K和Q5_K_M文件。使用huggingface-cli可方便下载所需文件。I-quant和K-quant适应不同硬件,特别在低于Q4时,I-quant表现出色。支持CPU和Apple Metal,需注意性能平衡。

aya-23-8B-GGUF - 更精细的文本生成量化选项分析
GithubHuggingfacetransformers开源项目文本生成模型质心量化
项目使用最先进的llama.cpp imatrix量化技术,支持多语言文本生成。多种量化格式,例如Q8_0和紧凑型IQ系列,提供应用的灵活性。用户依据硬件选择文件,以优化性能。创新量化处理为多语言文本生成提供了更高效的实现路径。
Llama-3-8B-Instruct-GPTQ-4-Bit - 利用GPTQ量化优化模型性能的新方法
Apache AirflowGPTQGithubHuggingfaceMeta-Llama-3-8B-Instruct开源项目数据协调模型量化
Astronomer的4比特量化模型通过GPTQ技术减少VRAM占用至不足6GB,比原始模型节省近10GB。此优化提高了延迟和吞吐量,即便在较便宜的Nvidia T4、K80或RTX 4070 GPU上也能实现高效性能。量化过程基于AutoGPTQ,并按照最佳实践进行,使用wikitext数据集以减小精度损失。此外,针对vLLM和oobabooga平台提供详细配置指南,以有效解决加载问题。
Qwen2.5-3B-Instruct-GGUF - Qwen2.5-3B-Instruct重启量化技术提升多设备文本生成表现
GithubHuggingfaceQwen2.5-3B-Instruct嵌入输出权重开源项目文件大小模型模型下载量化
本项目通过使用llama.cpp进行量化优化,使文本生成模型在各类设备上运行更为高效,其在ARM芯片上的性能尤为突出,同时提供多种量化类型以满足不同内存和计算需求。更新的tokenizer进一步提升了文本生成质量。项目提供多种K-quant和I-quant选项以满足特定环境需求,并深入对比不同量化格式的性能差异。为研究人员和开发者提供丰富下载资源和技术支持,助力大规模语言模型的高效实现。
Meta-Llama-3.1-70B-Instruct-quantized.w8a8 - 经INT8量化优化的Llama-3指令模型实现内存节省和性能提升
AI助手GithubHuggingfaceMeta-Llama-3.1vLLM开源项目模型模型量化语言模型评估
Meta-Llama-3.1-70B-Instruct模型通过INT8量化优化后,GPU内存占用减少50%,计算性能提升两倍。模型保持多语言处理能力,在Arena-Hard、OpenLLM、HumanEval等基准测试中性能恢复率达98%以上。支持vLLM后端部署及OpenAI兼容API。
llama3-8B-DarkIdol-2.2-Uncensored-1048K-GGUF - 多语言支持的llama3-8B GGUF量化模型,提供多级压缩优化
GGUFGithubHuggingfacellama3大语言模型开源项目权重压缩模型量化模型
llama3-8B GGUF量化模型支持英语、日语和中文,提供3.3GB至16.2GB多种压缩版本,适应不同硬件需求。Q4_K系列在性能和质量上表现均衡。模型基于transformers库开发,适用于角色扮演和偶像相关场景。用户可通过Hugging Face平台获取各版本及其性能对比信息。
Meta-Llama-3.1-70B-Instruct-quantized.w4a16 - Meta-Llama 3.1 70B模型的INT4量化版本 性能几乎不损
GithubHuggingfaceINT4Meta-Llama-3.1vLLM开源项目模型自然语言处理量化模型
Meta-Llama-3.1-70B-Instruct模型的INT4量化版本,模型大小减少75%,但性能几乎不损。支持多语言,适用于商业和研究。可通过vLLM高效部署,在Arena-Hard、OpenLLM和HumanEval等测试中表现优异,展示出卓越的推理和编码能力。
Qwen2.5-32B-AGI-GGUF - Qwen2.5-32B-AGI模型量化与性能优化概述
GithubHuggingfaceQwen2.5-32B-AGI开源项目文本生成权重模型模型优化量化
介绍Qwen2.5-32B-AGI在Llamacpp中的量化模型,强调文本生成性能的提升。多种量化格式(如Q8_0,Q6_K_L)满足不同需求,结合embed/output量化,适应低RAM环境。提供模型选择、下载与运行指南,含基于ARM芯片的性能优化方法。
bagel-8b-v1.0-GGUF - 多样化量化文件助力文本生成
GithubHuggingfaceRAM需求bagel-8b-v1.0开源项目文件下载模型模型量化高质量
bagel-8b-v1.0-GGUF项目通过llama.cpp量化技术,提供多种优化的模型文件,涵盖从高品质到低内存的多层次需求。用户可根据硬件条件选择合适的K-quants或I-quants版本,详细对比信息参见Artefact2的分析。
StarCoder2-7B-GGUF - 多种量化模型版本,提升代码生成性能与存储效率
GithubHuggingfaceLlamaEdgeStarCoder2代码生成开源项目模型模型压缩量化模型
此项目提供多种量化模型版本,旨在优化代码生成任务中的性能与存储效率。可选范围包括小容量、质量损失较大的版本到大容量、质量损失低的版本,以满足各种需求。Q4_K_M与Q5_K_M模型在质量与容量间表现出良好的平衡。该项目使用llama.cpp进行量化,适合空间与性能有特定需求的开发者。
Llama-3.2-3B-Instruct-GGUF - Llama 3.2多语言模型的高效量化部署方案
GithubHuggingfaceLlama 3.2多语言开源项目机器学习模型语言模型量化模型
Llama 3.2系列多语言模型的GGUF量化版本,针对对话、检索和摘要任务进行优化。通过多种量化方案实现4.66GB至9.38GB的灵活内存占用,适合在资源受限环境部署。该模型在主流行业基准测试中展现了良好性能。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号