Project Icon

qwen2.5-7b-ins-v3-GGUF

量化优化AI模型的多样化选择指南

该项目利用llama.cpp的b3901版本和imatrix选项对AI模型进行量化优化,支持各种硬件的量化格式下载。在LM Studio中运行这些模型,可通过缩小文件大小实现更高效的部署。K-quant格式在低资源环境中表现突出,而I-quants则在某些情况下显示出其新方法的优越性能,尤其建议ARM芯片用户选择Q4_0_X_X以获取更快速的响应。

Llama-3-8B-Instruct-GPTQ-4-Bit - 利用GPTQ量化优化模型性能的新方法
Apache AirflowGPTQGithubHuggingfaceMeta-Llama-3-8B-Instruct开源项目数据协调模型量化
Astronomer的4比特量化模型通过GPTQ技术减少VRAM占用至不足6GB,比原始模型节省近10GB。此优化提高了延迟和吞吐量,即便在较便宜的Nvidia T4、K80或RTX 4070 GPU上也能实现高效性能。量化过程基于AutoGPTQ,并按照最佳实践进行,使用wikitext数据集以减小精度损失。此外,针对vLLM和oobabooga平台提供详细配置指南,以有效解决加载问题。
Qwen2.5-7B-Instruct-GGUF - 开源大语言模型GGUF量化版支持多语言和128K长文本处理
GithubHuggingfaceQwen2.5人工智能多语言支持大语言模型开源项目模型深度学习
Qwen2.5-7B指令模型GGUF量化版是Qwen2.5系列的一部分,采用transformers架构,拥有7.61B参数。该模型支持29种语言,可处理128K文本上下文,并提供q2至q8多种量化精度选项。相比前代,模型在知识储备、代码、数学能力、指令执行、长文本生成和结构化数据理解等方面均有显著提升。
codegeex4-all-9b-GGUF - 模型量化优化概览与比较指南
GithubHuggingfacecodegeex4下载开源项目性能文件选择模型量化
Codegeex4项目通过llama.cpp优化实现多种量化模型文件选择,满足不同硬件下的最佳性能需求。建议根据系统的RAM和GPU的VRAM来选择合适的K-quant和I-quant格式文件。若使用Nvidia或AMD显卡,可选择相应的量化文件格式以提升效率。查阅提供的链接以了解详细的性能比较与选择指南。
Llama-3.2-3B-Instruct-uncensored-GGUF - 多硬件兼容的Llama-3.2量化模型
ARM推理GithubHuggingfaceLlama-3.2-3B-Instruct-uncensored嵌入权重开源项目数据集模型量化
LLama-3.2-3B-Instruct模型经过imatrix量化处理,确保在多种硬件配置(如ARM架构)下的高效表现。可在LM Studio中运行并支持多种格式选择,以满足不同内存和性能要求。通过huggingface-cli下载特定文件或全集成,方便易用。K-quants和I-quants提供多样化速度与性能的选择,是研究及开发人员的灵活工具。用户反馈能有效提升量化模型的适用性。
Qwen2.5-72B-Instruct-GGUF - 新一代多语言模型,提升指令理解与长文本处理
GithubHuggingfaceQwen多语言支持开源项目指令调优模型语言模型长上下文支持
Qwen2.5系列模型通过改进的专家模型,增强编码和数学性能,支持29种语言,提供最长128K的上下文处理与8K tokens的生成能力。其提升的指令跟随与结构化数据生成能力适合多样化系统提示,使聊天机器人更准确。72B模型采用GGUF格式和现代架构技术,提供流畅对话体验。
Gemma-2-9B-It-SPPO-Iter3-GGUF - 探讨Gemma-2-9B模型量化版本的性能与存储选择
Gemma-2-9B-It-SPPO-Iter3GithubHuggingface下载指南开源项目数据集模型量化高性能
该项目利用llama.cpp进行量化,推出多种Gemma-2-9B-It-SPPO-Iter3模型版本以适应不同的内存及性能需求。用户可按RAM和VRAM状况选择合适的量化格式,如高质量的Q6_K_L或经济型IQ2_M。量化文件大小介于4GB至37GB之间,且可通过Huggingface下载。根据VRAM选择合适模型尺寸,有助于优化运行速度,并提供多样化选项以满足不同性能与存储需求。
Qwen2.5-72B-Instruct-GPTQ-Int4 - Qwen2.5-72B模型4位量化版支持128K长文本及多语言处理
GithubHuggingfaceQwen2.5多语言支持大语言模型开源项目模型量化长文本处理
Qwen2.5-72B指令微调模型通过GPTQ技术实现4位量化,降低了模型部署门槛。模型支持中英等29种语言,具有出色的代码开发和数学运算能力,可处理128K tokens长度的输入文本并生成8K tokens的输出。基于RoPE等技术的transformers架构使其在长文本理解、结构化数据处理等任务中表现稳定。
Phi-3.5-mini-instruct-GGUF - 高性能微软小型语言模型的量化方案
ARM芯片GGUFGithubHuggingfacePhi-3.5-mini-instruct开源项目模型模型权重量化
该项目基于llama.cpp框架,对Microsoft Phi-3.5-mini-instruct模型进行GGUF格式量化,提供从Q2到Q8等多个精度版本。每个量化版本都针对不同硬件平台进行了优化,包括针对ARM芯片的特殊优化版本。项目提供完整的模型特性对比和选择指南,帮助开发者根据实际需求选择合适的量化版本。
Yi-1.5-34B-Chat-GGUF - 多种量化选项助力Yi-1.5-34B-Chat模型优化
GithubHuggingfaceYi-1.5-34B-Chat下载开源项目文件选择模型系统要求量化
本文介绍了Yi-1.5-34B-Chat模型的多种量化方法,通过llama.cpp的imatrix选项,为不同需求提供多种文件版本和质量等级。用户可依据硬件条件选择合适的量化文件,满足RAM与VRAM的需求。文中附有使用指导和性能比较图表链接,帮助用户在性能和文件大小间权衡。此外,还说明了I-quant和K-quant的区别及应用场景,便于用户在不同硬件环境中高效应用该文本生成模型。
Meta-Llama-3.1-8B-Instruct-AWQ-INT4 - 高性能4比特量化优化版本
AutoAWQGithubHuggingfaceMeta-Llama-3.1大语言模型开源项目推理模型量化
Meta-Llama-3.1-8B-Instruct模型的社区驱动4比特量化版本,采用AutoAWQ技术从FP16量化到INT4。该版本仅需4GB显存即可加载,大幅降低内存占用。支持Transformers、AutoAWQ、TGI和vLLM等多种推理方式,适用于不同部署场景。量化模型在保持原始性能的同时,为资源受限环境提供了高效的大语言模型方案。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号