Project Icon

truss

简便的AI/ML模型生产环境部署工具

Truss是一个用于在生产环境中轻松打包和部署AI/ML模型的工具。它具有一次编写即可在任何地方运行的特性,确保开发和生产环境的一致性。支持所有主流的Python框架,如transformers、diffusers、PyTorch和TensorFlow等,并包含快速开发反馈机制。Truss由Baseten维护,提供便捷的云端部署,通过Baseten的API密钥即可轻松实现远程部署。

trax - 代码清晰、高速执行的深度学习库
GithubGoogle BrainReformerTransformerTrax开源项目深度学习
Trax是一个由Google Brain团队维护的端到端深度学习库,专注于清晰代码和高速执行。它提供预训练的Transformer模型和丰富的API文档,支持用户创建和训练自定义模型,并与TensorFlow数据集无缝集成。Trax兼容CPUs、GPUs和TPUs,用户可以通过Python脚本、notebooks和命令行界面轻松使用。
trankit - 轻量级的多语言自然语言处理Python工具包,支持多个语言的预训练模型
GithubNLP工具PythonTrankitTransformer多语言开源项目
Trankit是一个基于Transformer架构的轻量级Python工具包,支持多语言自然语言处理,包含针对56种语言的90个预训练流水线。它引入了自动模式,多语言输入可自动检测。Trankit在多个自然语言处理任务上表现优异,超过Stanza等主流工具包,并保持高效的内存使用和处理速度。用户无需编程经验即可通过简便的命令行界面使用,还可定制流水线。
tr - 高效的离线OCR文本识别与文档理解SDK
CRNNGithubOCRTransformertr多模态大模型开源项目
tr是一款离线OCR文本识别SDK,核心采用C++开发并提供Python接口,支持多行文本识别和多模态大模型集成。tr结合CRNN与TransformerEncoder,提供高效且资源占用低的OCR解决方案,适用于如弯曲文本和图表等复杂场景。最新版本优化了C++接口、支持Python2、多线程功能,并去除了对opencv-python和Pillow的依赖。提供简洁的下载与安装指引,及详细的示例代码便于快速部署和测试。
trulens - 神经网络评估与解释工具,支持大语言模型开发与监控
GithubTruLensTruLens-EvalTruLens-Explain开源项目深度学习神经网络
TruLens 提供开发和监控神经网络的工具,特别是大语言模型。TruLens-Eval 可系统性评估和跟踪LLM应用,帮助识别和改进性能;TruLens-Explain 提供跨框架的深度学习可解释性,支持TensorFlow、PyTorch和Keras。查看官方文档以获取快速安装和使用指南,帮助开发者高效构建与优化模型应用。
trl - 用于大型语言模型微调和对齐的开源工具库
GithubTRLTransformer大语言模型开源项目强化学习微调
TRL是一个开源的全栈工具库,专用于大型语言模型的微调和对齐。它支持监督式微调、奖励建模和近端策略优化等方法,适用于多种模型架构。该库基于Transformers构建,提供灵活的训练器和自动模型类,并集成Accelerate、PEFT等工具实现高效扩展。TRL还提供命令行界面,方便用户进行模型微调和交互。
pytriton - 优化Python环境下NVIDIA Triton推理服务器的应用
GithubNVIDIAPyTritonPython框架开源项目推理服务机器学习模型
PyTriton是一款类似Flask/FastAPI的框架,旨在优化NVIDIA Triton推理服务器在Python环境中的应用。该框架支持直接从Python部署机器学习模型,具有原生Python支持、框架无关性和性能优化等特点。通过简洁的接口,PyTriton简化了模型部署、性能优化和API开发过程。不论使用PyTorch、TensorFlow还是JAX,开发者均可将Python代码轻松转换为HTTP/gRPC API。
traceml - 机器学习数据追踪与可视化工具,支持多种深度学习框架
GithubPolyaxonTraceML开源项目数据追踪机器学习深度学习
TraceML 是一款强大的工具,用于机器学习和数据的追踪、可视化、解释和漂移检测。它与 Keras、PyTorch、TensorFlow、Fastai、Pytorch Lightning 和 HuggingFace 等多种深度学习和机器学习框架集成,方便用户记录和跟踪实验数据。TraceML 支持离线模式、多种数据可视化接口,并能生成详细的数据框架总结。
trlx - 分布式微调大型语言模型的强化学习框架,支持奖励函数与高效并行
GithubHugging FaceILQLNVIDIA NeMoPPOtrlX开源项目
一个专注于强化学习微调大型语言模型的分布式训练框架。支持使用奖励函数或已标注数据集进行训练,兼容🤗Hugging Face和NVIDIA NeMo模型,可扩展到20B参数以上。实现了PPO和ILQL等多种RL算法,提供详细文档和丰富示例,支持分布式训练和超参数搜索。适用于各种应用场景,通过高效并行技术提升训练效率。
BentoML - 简化AI模型推理API的构建与部署
AI模型BentoMLDocker容器Github开源项目模型服务框架生产环境
BentoML是一个开源模型服务框架,简化了AI和ML模型的生产部署。可以将任何模型推理脚本轻松转化为REST API服务器,并通过简单配置文件管理环境、依赖和模型版本。BentoML支持高性能推理API的构建,利用动态批处理、模型并行化和多阶段流水线等优化功能,最大化CPU/GPU利用率。此外,还支持自定义AI应用、异步推理任务和定制化前后处理逻辑。通过Docker容器或BentoCloud可轻松部署至生产环境,适用于各种机器学习框架和推理运行时。
Trace - 创新AutoDiff工具助力AI系统端到端训练
AI系统GithubPyTorchTrace优化开源项目自动微分
Trace是微软开发的创新AutoDiff工具,旨在实现AI系统的端到端训练。该工具通过捕获和传播执行轨迹,扩展了反向传播算法的应用范围。Trace作为Python库,支持直接编写代码并优化特定部分,类似于PyTorch的使用方式。它可处理多种反馈类型,如数值奖励、损失函数、自然语言文本和编译器错误。Trace为AI系统优化提供了灵活且强大的解决方案,适用于各种复杂的AI训练场景。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

Project Cover

天工AI音乐

天工AI音乐平台支持音乐创作,特别是在国风音乐领域。该平台适合新手DJ和音乐爱好者使用,帮助他们启动音乐创作,增添生活乐趣,同时发现和分享新音乐。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号