Project Icon

Long-CLIP

CLIP模型长文本处理能力升级 显著提升图像检索效果

Long-CLIP项目将CLIP模型的最大输入长度从77扩展到248,大幅提升了长文本图像检索性能。在长标题文本-图像检索任务中,R@5指标提高20%;传统文本-图像检索提升6%。这一改进可直接应用于需要长文本处理能力的各类任务,为图像检索和生成领域带来显著进展。

CLIPSelf - 视觉Transformer自蒸馏实现开放词汇密集预测
CLIPSelfCOCOGithub密集预测开放词汇开源项目视觉Transformer
CLIPSelf项目提出创新自蒸馏方法,使视觉Transformer能进行开放词汇密集预测。该方法利用模型自身知识蒸馏,无需标注数据,提升了目标检测和实例分割等任务性能。项目开源代码和模型,提供详细训练测试说明,为计算机视觉研究提供重要资源。
ViT-B-32__openai - CLIP模型的ONNX导出版本用于图像和文本嵌入生成
CLIPGithubHuggingfaceImmich图像编码器开源项目文本编码器模型自托管照片库
ViT-B-32__openai项目是CLIP模型的ONNX导出版本,将视觉和文本编码器分离为独立模型。这种设计适用于生成图像和文本嵌入,特别针对Immich自托管照片库。该项目可用于处理大量图像和文本数据,有助于改进图像检索和跨模态搜索功能。
ViT-L-16-SigLIP-384 - 基于SigLIP的先进视觉语言模型实现零样本图像分类
GithubHuggingfaceSigLIP图像分类开源项目模型深度学习自然语言处理计算机视觉
ViT-L-16-SigLIP-384是一个在WebLI数据集上训练的SigLIP模型,专门用于语言-图像预训练。这个模型支持对比式图像-文本学习和零样本图像分类,已从JAX格式转换为PyTorch,可兼容OpenCLIP和timm库。它在视觉-语言处理方面表现出色,能够应用于多种计算机视觉任务,如图像分类和跨模态检索。
siglip-base-patch16-512 - 采用Sigmoid损失函数的开源计算机视觉模型
GithubHuggingfaceSigLIP图像分类图文匹配开源项目模型深度学习计算机视觉
SigLIP在CLIP架构基础上改进了损失函数设计,使用Sigmoid损失函数处理图像-文本对训练。该模型在WebLI数据集上预训练,支持512x512分辨率的图像输入,主要应用于零样本图像分类和图文检索。相比CLIP,新的损失函数无需全局相似度归一化,使模型在不同批量规模下都能保持稳定表现。
DIVA - 扩散模型辅助CLIP增强视觉理解能力
AI视觉CLIPDIVAGithub开源项目扩散模型迁移学习
DIVA是一种创新方法,利用扩散模型作为视觉助手优化CLIP表示。通过文本到图像扩散模型的生成反馈,DIVA无需配对文本数据即可提升CLIP视觉能力。在MMVP-VLM细粒度视觉评估基准上,DIVA显著提升了CLIP性能,同时保持了其在29个图像分类和检索基准上的强大零样本能力。这为增强视觉语言模型的视觉理解开辟了新途径。
CLIP-ViT-B-16-DataComp.XL-s13B-b90K - 多模态模型CLIP ViT-B/16的零样本图像分类解析
CLIPGithubHuggingface图像生成开源项目数据集模型训练数据零样本图像分类
CLIP ViT-B/16模采用DataComp-1B数据集训练,并结合OpenCLIP工具,旨在促进研究者对零样本图像分类的理解。该模型在ImageNet-1k数据集上实现了73.5%的零样本准确率,展示了其在多领域研究中的潜力和挑战。由于数据集仍未完全筛选,建议仅限于学术研究使用。
ViT-SO400M-14-SigLIP-384 - 采用SigLIP技术的大规模视觉-语言预训练模型
GithubHuggingfaceSigLIPViT-SO400M-14WebLI图像文本对比开源项目模型零样本图像分类
ViT-SO400M-14-SigLIP-384是一个在WebLI数据集上训练的大规模视觉-语言预训练模型。该模型采用SigLIP(Sigmoid Loss for Language-Image Pre-training)技术,适用于对比学习和零样本图像分类任务。模型提供了与OpenCLIP和timm库的兼容性,支持图像和文本编码。研究人员可将其应用于图像分类、检索等多种视觉-语言任务中。
siglip-large-patch16-384 - 通过改进的损失函数提升多模态图像和文本的匹配效率
GithubHuggingfaceSigLIP图像分类多模态模型开源项目模型零样本学习预训练
SigLIP模型通过改进的sigmoid损失函数在图像文本配对任务中表现优异,无需成对相似性的全局视图归一化,使批量处理更加灵活高效。适用于零样本图像分类和图像文本检索等任务,展现出优秀的可用性和扩展性。在WebLI数据集上预训练,有效提升多模态任务表现,同时保持在较低复杂性问题中的有效性。了解更多,请访问模型文档。
DFN2B-CLIP-ViT-L-14 - 基于CLIP架构的大规模数据集训练图像识别模型
CLIPGithubHuggingface图像分类开源项目数据过滤网络机器学习模型计算机视觉
DFN2B-CLIP-ViT-L-14是一个基于CLIP架构的图像识别模型,采用数据过滤网络从128亿图像-文本对中筛选20亿高质量样本进行训练。该模型在多个基准测试中平均准确率达66.86%,可用于零样本图像分类等任务。模型提供OpenCLIP接口,便于开发者使用。DFN2B-CLIP-ViT-L-14体现了大规模数据集和先进算法在计算机视觉领域的应用,为图像理解提供有力支持。
bioclip - 生物分类视觉模型提升物种识别精度
BioCLIPGithubHuggingface开源项目模型濒危物种生物分类视觉模型进化生物学
BioCLIP是一个基于CLIP架构的生物学视觉模型,利用包含超过45万分类单元的数据集,在生物分类测试中表现超过基准16%-17%。它能学习与生命树一致的层次表示,支持生物学家进行新物种和相似生物的发现。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

白日梦AI

白日梦AI提供专注于AI视频生成的多样化功能,包括文生视频、动态画面和形象生成等,帮助用户快速上手,创造专业级内容。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

讯飞绘镜

讯飞绘镜是一个支持从创意到完整视频创作的智能平台,用户可以快速生成视频素材并创作独特的音乐视频和故事。平台提供多样化的主题和精选作品,帮助用户探索创意灵感。

Project Cover

讯飞文书

讯飞文书依托讯飞星火大模型,为文书写作者提供从素材筹备到稿件撰写及审稿的全程支持。通过录音智记和以稿写稿等功能,满足事务性工作的高频需求,帮助撰稿人节省精力,提高效率,优化工作与生活。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号