Project Icon

bert-base-uncased-emotion

情感数据集的高效文本分类模型

bert-base-uncased模型针对情感数据集的微调结果显示,其在准确率和F1分数分别达到94.05%和94.06%。借助PyTorch和HuggingFace平台,该模型实现高效的情感文本分类,适用于社交媒体内容分析,特别是在Twitter环境中,为数据科学家和开发人员提供情感解析的精确工具。

emotion_text_classifier - DistilRoBERTa微调的多类情感分析模型
DistilRoBERTaGithubHuggingface开源项目情感分类机器学习模型深度学习自然语言处理
这是一个基于DistilRoBERTa微调的情感分类模型,能够识别文本中的七种情绪,包括六种基本情绪和一种中性情绪。模型在《老友记》剧本数据集上进行了微调,特别适合分析电视剧和电影的对话文本。支持的情绪标签包括愤怒、厌恶、恐惧、快乐、中性、悲伤和惊讶,为自然语言处理中的情感分析任务提供了实用工具。
emotion-english-distilroberta-base - DistilRoBERTa英文文本情感分析模型
DistilRoBERTaGithubHugging FaceHuggingface开源项目情感分类机器学习模型自然语言处理
该模型基于DistilRoBERTa-base微调,用于英文文本情感分析。可预测7种情绪:愤怒、厌恶、恐惧、快乐、中性、悲伤和惊讶。训练数据来自Twitter、Reddit等6个多样化数据集。提供简单的3行代码使用方法,适用于单个文本和完整数据集分析。模型在平衡数据集上的评估准确率为66%,远高于随机基准。
distilbert-base-multilingual-cased-sentiment - 多语种情感分析模型的高效文本分类能力
Amazon评论GithubHuggingfacedistilbert-base-multilingual-cased-sentiment开源项目情感分析文本分类机器学习模型
本项目基于distilbert-base-multilingual-cased模型进行微调,在amazon_reviews_multi数据集上实现了优异的文本分类效果,准确率和F1值均为0.7648。模型通过优化训练参数和分布式数据处理,实现高效运行,适合多语言情感分析应用场景,可用于全球市场的用户评价分析。
distilbert-base-uncased-go-emotions-student - 面向GoEmotions数据集的高效情感分类模型
GithubGoEmotionsHuggingface开源项目文本分类模型模型蒸馏语言模型零样本分类
该模型运用未标注GoEmotions数据集,利用零样本学习技术进行精炼。尽管其性能可能略逊于完全监督下的模型,但它展示了如何将复杂的自然语言推理模型简化为高效的模型,以便在未标注数据上进行分类器训练。
bert-base-uncased-yelp-polarity - BERT模型基于Yelp评论数据集实现高准确率情感分析
GithubHuggingfaceTextAttackbert-base-uncased序列分类开源项目模型模型微调自然语言处理
该项目基于bert-base-uncased模型,利用TextAttack框架和yelp_polarity数据集进行微调,构建了一个文本情感分类器。经过5轮训练,模型在评估集上达到96.99%的准确率。支持最大256的序列长度,专门用于Yelp评论的情感分析。模型采用16的批次大小和5e-05的学习率,展现出优秀的性能表现。
distilbert-base-uncased-finetuned-sst-2-english - 英语文本情感分析的高精度模型
DistilBERTGithubHuggingface偏见开源项目文本分类模型精度
模型由Hugging Face团队微调,适用于SST-2情感分析任务,精度达到91.3%。针对英语文本特性设计,适合单标签分类。适用Python和Transformers库,易于集成。模型可实现高效特征提取,但可能在特定背景下产生偏差,应在应用前充分测试。开放源代码,Apache-2.0许可支持二次开发。
bert-base-turkish-sentiment-cased - 高精度的土耳其语言情感分析BERT模型
BERTurkGithubHuggingface土耳其语开源项目情感分析数据集模型模型训练
该模型基于BERTurk,专为土耳其语言的情感分析设计,结合了电影评论、产品评论和推特数据集,实现了95.4%的准确度。适用于多种土耳其语文本情感分析场景,项目由Savas Yildirim发布于Hugging Face平台,并采用了先进的特征表示与融合技术。使用者需遵循引用要求以符合合规标准。
bert-base-multilingual-uncased-sentiment - BERT多语言产品评论情感预测模型
GithubHuggingfacebert-base-multilingual-uncased产品评论准确率多语言模型开源项目情感分析模型
bert-base-multilingual-uncased-sentiment是一个基于BERT的多语言情感分析模型,支持英、荷、德、法、西、意六种语言的产品评论分析。模型通过1至5星评级预测评论情感,在大规模多语言产品评论数据集上训练。测试结果显示,模型在各语言上均达到较高的准确率,特别是在'差一星'的宽松评估标准下,准确率普遍超过93%。该模型可直接应用于目标语言的产品评论情感分析,也可作为相关任务的预训练模型进行进一步微调。
bertweet-base-sentiment-analysis - 英文推文情感分析模型 BERTweet-Sentiment
BERTweetGithubHuggingface开源项目情感分析推特数据机器学习模型模型自然语言处理
bertweet-base-sentiment-analysis是一个基于SemEval 2017语料库训练的英文情感分析模型。它利用BERTweet作为基础,能够识别文本中的积极、消极和中性情感。作为pysentimiento库的组成部分,该开源项目主要面向非商业用途和科研领域,为自然语言处理研究提供了实用的情感分析工具。
twitter-roberta-base-emotion-multilabel-latest - 精确识别推文情绪的多标签分类模型
GithubHuggingfacetweetnlptwitter-roberta-base-emotion-multilabel-latest多标签分类开源项目情感分析机器学习模型
该项目微调了cardiffnlp/twitter-roberta-base-2022-154m模型,专注于SemEval 2018情感分析任务,显著增强推文的多标签情绪分类能力。模型在测试集上的F1 micro为0.7169,F1 macro为0.5464,是推文情感分析的理想选择。适用于tweetnlp和transformers中的文本分类任务,支持通过Python加载工具进行灵活使用,有助于社交媒体情感解析。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号