Project Icon

bitsandbytes

高效CUDA优化库 支持多位量化和矩阵运算

bitsandbytes是一个轻量级Python库,为CUDA自定义函数提供封装。该库主要提供8位优化器、矩阵乘法(LLM.int8())以及8位和4位量化功能。通过bitsandbytes.nn模块实现多位线性层,bitsandbytes.optim模块提供优化器。目前正在拓展对更多硬件后端的支持,包括Intel CPU+GPU、AMD GPU和Apple Silicon,Windows平台的支持也在开发中。

llama-2-7b-bnb-4bit - 提升Llama模型性能,实现速度翻倍与内存节省
GithubHuggingfaceLlamaUnsloth内存优化参数调优开源项目模型模型量化
项目通过4bit量化模型和Unsloth技术,优化Llama系列模型的性能。用户可在Google Colab上进行简单操作,免费获取如Gemma、Mistral、TinyLlama等模型,并实现性能提升和内存节省。以Llama 2为例,其推理速度可提高2.2倍,内存使用减少43%。项目适合初学者,支持导出为GGUF和vLLM格式,可上传至Hugging Face。
exllama - 为现代GPU优化的快速内存高效Llama实现
AI模型CUDAExLlamaGPU加速Github开源项目深度学习
ExLlama是一个基于Python/C++/CUDA的独立实现,针对4位GPTQ权重进行了优化,旨在提高现代GPU上的运行速度和内存效率。该项目支持NVIDIA 30系列及更新的GPU,可处理Llama、Koala和WizardLM等多种大型语言模型。ExLlama具备基准测试、聊天机器人示例和Web界面等功能,同时支持Docker部署。尽管仍在开发中,项目已展现出卓越的性能和效率。
thundersvm - GPU加速的开源支持向量机库
GPU加速GithubThunderSVM并行计算开源项目支持向量机机器学习
ThunderSVM是一个开源的支持向量机库,通过GPU和多核CPU加速计算,显著提高SVM训练效率。该库实现了LibSVM的全部功能,支持一类SVM、SVC、SVR和概率SVM等多种模型。ThunderSVM提供Python、R、Matlab和Ruby等多种编程语言接口,跨平台兼容Linux、Windows和MacOS。采用与LibSVM一致的命令行参数,便于用户快速上手。作为高效的SVM实现,ThunderSVM为数据科学家和机器学习研究者提供了强大的工具支持。在某些大规模数据集上,ThunderSVM相比传统SVM实现可实现10-100倍的加速,已被多个知名机器学习项目采用。
Open_Gpt4_8x7B_v0.2-GGUF - 提供多格式兼容量化模型,提升推理效率
GGUFGithubHuggingfaceOpen Gpt4 8X7B V0.2rombo dawg开源项目模型模型兼容性量化
此项目提供GGUF格式的多精度量化模型文件,旨在优化CPU和GPU的推理效率。作为GGML的替代,GGUF与多种第三方UI和库兼容,支持多平台AI模型的高效运行。项目包含2至8位量化模型以满足不同精度与内存要求,适合多种场景需求。通过详细的下载指导,用户能快速找到适合的模型文件,并利用llama.cpp、text-generation-webui等高性能运行时实现模型在不同硬件上的高效推理。
how-to-optim-algorithm-in-cuda - 记录如何基于 cuda 优化一些常见的算法
CUDAGithubOneFlowPyTorch开源项目深度学习算法优化
本项目详尽介绍了基于CUDA的算法优化方法,涉及从基本元素操作到高级并行处理,包括多个CUDA示例和性能评测。此外,配合专业课程及学习笔记,适用于各层次对CUDA感兴趣的人士。项目还整合了多种教程和代码示例,助力快速学习和应用CUDA优化技术。
KVQuant - 提升长上下文推理效率的KV缓存量化方法
GithubKVQuantLLaMA-7B低精度量化大模型开源项目长上下文长度推断
KVQuant通过精确的低精度量化技术显著提升长上下文长度推理的效率。其创新包括每通道的RoPE前关键量化和非均匀量化,以应对不同LLM中缓存的KV值模式。KVQuant支持在单个A100-80GB GPU上进行LLaMA-7B模型的1M上下文长度推理,甚至在8-GPU系统上支持长达10M上下文长度,从而减少推理过程中KV缓存的内存瓶颈,并通过并行topK支持和注意力感知量化等多项改进提升推理性能。
kompute - 通用GPU计算框架,支持AMD、Qualcomm和NVIDIA显卡
GPU加速GithubKomputeLinux基金会Vulkan开源项目机器学习
快速、移动友好且异步的通用GPU计算框架,专为高级GPU加速优化。支持Python和C++并兼容Vulkan,适用于机器学习、移动开发和游戏开发。由Linux基金会支持,社区活跃,示例丰富。
SqueezeLLM - 硬件资源优化下的大语言模型量化服务
GithubSqueezeLLM内存优化大语言模型开源项目模型压缩量化
SqueezeLLM通过密集与稀疏量化方法降低大语言模型的内存占用并提升性能,将权重矩阵拆分为易量化的密集组件和保留关键部分的稀疏组件,实现更小内存占用、相同延迟和更高精度。支持包括LLaMA、Vicuna和XGen在内的多个热门模型,提供3位和4位量化选项,适用于不同稀疏度水平。最新更新涵盖Mistral模型支持和自定义模型量化代码发布。
lightning-uq-box - 神经网络不确定性量化开源工具库
GithubLightning-UQ-BoxPyTorch不确定性量化开源项目机器学习深度学习
Lightning-UQ-Box是基于PyTorch的开源库,为神经网络提供多种不确定性量化技术。该库实现了多种UQ方法,支持不同架构和理论基础,便于在数据集上比较方法效果。它简化了UQ在工作流中的应用,降低了使用门槛,有助于促进UQ方法的比较和开发,并注重实验的可重现性。
Phi-3-medium-128k-instruct-GGUF - Phi-3-medium-128k-instruct模型的多硬件平台适配与量化选项
GithubHuggingfacePhi-3-medium-128k-instructllama.cpp开源项目模型模型下载自然语言处理量化
Phi-3-medium-128k-instruct项目以llama.cpp最新版本为基础,提供多种量化模型以适应不同内存与性能需求,支持包括Nvidia的cuBLAS、AMD的rocBLAS、CPU及Apple Metal在内的多种硬件平台。推荐使用Q6_K_L和Q5_K_M版本以实现高精度场景需求。用户可利用huggingface-cli选择性下载所需模型,以达到速度与质量的最佳平衡。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号