Project Icon

tsfresh

时间序列特征自动提取和分析的Python开源工具

tsfresh是一个开源Python库,专注于时间序列数据的自动特征提取。它集成了统计学、时间序列分析、信号处理和非线性动力学的算法,并提供了特征选择机制。该工具可处理多种采样数据和事件序列,提供100多种预定义特征,并通过内置过滤程序评估特征重要性。tsfresh支持回归和分类任务,兼容sklearn、pandas和numpy,可在本地或集群环境运行,为时间序列分析提供了高效解决方案。

statsforecast - 快速高效的统计时间序列预测工具
GithubStatsForecast开源项目性能优化时间序列预测统计模型自动模型
StatsForecast是一个专注于统计时间序列预测的Python库。它集成了多种常用模型如ARIMA、ETS等,并通过numba实现高性能计算。该库支持概率预测、外生变量处理和异常检测,可与Spark等大数据框架无缝对接。StatsForecast能高效处理大规模时间序列数据,适用于生产环境和基准测试。
Time-series-prediction - 多功能的TensorFlow时间序列预测平台
GithubTFTSTensorFlow开源项目时间序列深度学习预测
TFTS(TensorFlow Time Series)是一个易用的时间序列预测工具包,支持TensorFlow和Keras中的经典及前沿深度学习方法。适用于预测、分类及异常检测任务。提供适应工业、研究和竞赛所需的深度学习模型,配有详尽文档和教程,帮助用户快速入门。
AutoTS - 自动化时间序列预测工具
AutoTSGithubPython包开源项目数据分析时间序列预测自动机器学习
AutoTS是一个Python时间序列预测工具,专注于快速部署高精度预测模型。该工具在2023年M6预测竞赛中表现出色,支持多种预测模型和数据转换方法。AutoTS能够处理多变量输出和概率预测,通过自动机器学习寻找最佳模型组合。它适用于大规模数据集,提供横向和马赛克风格的集成方法,以及丰富的指标、交叉验证和数据处理功能。
TSDB - 高效便捷的时间序列数据集加载库
GithubPyPOTSTSDB开源工具开源项目数据挖掘时间序列数据集
TSDB是一个时间序列数据集加载库,支持172个公开数据集的一键加载。该工具简化了研究人员和工程师的数据获取流程,使他们能专注于数据处理。TSDB具备数据下载、加载和缓存管理功能,并支持缓存目录迁移。作为PyPOTS工具箱的组成部分,TSDB为时间序列数据挖掘提供了基础支持。
feature-engineering-for-time-series-forecasting - 时间序列预测特征工程全面指南
GithubPython开源项目数据处理时间序列预测机器学习特征工程
该项目提供时间序列预测特征工程的全面指南,涵盖数据表格化、时间序列分解、缺失值处理和异常值检测等核心内容。深入介绍滞后特征、窗口特征、趋势和季节性特征的创建方法,以及日期时间和分类特征的处理技巧。通过实践代码和详细说明,旨在提升预测模型性能。
TFB - 时间序列预测评估框架
GithubTFB基准测试开源库开源项目时序预测评估框架
TFB是一个为时间序列预测研究设计的开源库。它提供清晰的代码库,支持对预测模型进行端到端评估,并通过多种策略和指标比较模型性能。TFB特点包括多样化数据集、全面基线模型、灵活评估策略和丰富评估指标。研究人员可利用TFB开发新方法或评估自有时间序列数据。
timesfm - 谷歌研究院开发的时间序列预测基础模型
GithubTimesFM基础模型开源项目时间序列预测深度学习
TimesFM是谷歌研究院开发的时间序列预测基础模型,支持多种时间频率的单变量预测。模型可处理最长512个时间点的上下文和任意长度的预测范围,提供简单的API接口支持数组和pandas输入。通过外部回归器库,TimesFM能处理静态和动态协变量。此外,该模型支持微调功能,允许用户在自有数据上优化性能。
awesome-time-series - 时间序列分析资源及工具集锦
GithubPython可视化开源项目数据分析时间序列机器学习
该项目汇集了丰富的时间序列和序列数据处理资源。涵盖Python、R、Java等多种语言的工具库,内容包括特征工程、分割、增强和可视化等方面。同时收录了相关数据库、标注工具、学术论文、开源模型、书籍和课程,为时间序列分析提供全面参考。
tsai - 专注于时间序列分析的深度学习库,支持分类、回归和预测任务。
GithubPytorchdeep learningfastaitime seriestsai开源项目
tsai是基于Pytorch和fastai的开源深度学习库,专注时间序列分析,涵盖分类、回归和预测等任务。支持多种模型和数据集,并提供详尽的教程。适用于Pytorch 2.0,安装简便,适合开发和前沿研究。
deeptime - Python时间序列分析与动态建模库
Githubdeeptime动力学模型开源库开源项目时间序列分析机器学习
deeptime是一个专注于时间序列数据分析的Python库,集成了多种动态模型估计工具。该库涵盖传统线性学习方法(如马尔可夫状态模型、隐马尔可夫模型和Koopman模型)及先进的核方法和深度学习技术。与scikit-learn兼容的同时,deeptime还提供了独特的Model类,用于分析热力学、动力学和其他动态特性。该库支持多平台安装,适用于各类时间序列数据研究。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号