Project Icon

SALMONN

通用听觉能力赋能大语言模型 实现音频输入的多模态理解

SALMONN是清华大学和字节跳动共同开发的大语言模型,能处理语音、音频和音乐输入。通过结合Whisper和BEATs编码器,SALMONN实现了多语言语音识别、翻译和音频-语音推理等功能。该模型可理解多种音频输入并执行文本和语音指令,展现了跨模态能力,推动了具听觉能力的人工智能发展。

SALMONN: Speech Audio Language Music Open Neural Network

🚀🚀 Welcome to the repo of SALMONN!

SALMONN is a large language model (LLM) enabling speech, audio events, and music inputs, which is developed by the Department of Electronic Engineering at Tsinghua University and ByteDance. Instead of speech-only input or audio-event-only input, SALMONN can perceive and understand all kinds of audio inputs and therefore obtain emerging capabilities such as multilingual speech recognition and translation and audio-speech co-reasoning. This can be regarded as giving the LLM "ears" and cognitive hearing abilities, which makes SALMONN a step towards hearing-enabled artificial general intelligence.

🔥 News

  • [2024-05-28] 🧳 We have released all the annotations (including 600k SQA/AQA data and 50k audio-based storytelling data) for the 3-stage training of SALMONN! Feel free to download them here!
  • [2024-04-07] 🤖 We have released all the codes you need to train your own SALMONN! Try some cool things!
  • [2024-01-16] 💖 Our paper was accepted by ICLR 2024!
  • [2023-11-13] 🎁 We have released a 7B version of SALMONN at tsinghua-ee/SALMONN-7B and built the 7B demo here!
  • [2023-10-08] ✨ We have released the model checkpoint and the inference code for SALMONN-13B!

🌟 Structure

The model architecture of SALMONN is shown below. A window-level Q-Former is used as the connection module to fuse the outputs from a Whisper speech encoder and a BEATs audio encoder as augmented audio tokens, which are aligned with the LLM input space. The LoRA adaptor aligns the augmented LLM input space with its output space. The text prompt is used to instruct SALMONN to answer open-ended questions about the general audio inputs and the answers are in the LLM text responses.

⚡️ Demos

Compared with traditional speech and audio processing tasks such as speech recognition and audio caption, SALMONN leverages the general knowledge and cognitive abilities of the LLM to achieve a cognitively oriented audio perception, which dramatically improves the versatility of the model and the richness of the task. In addition, SALMONN is able to follow textual commands and even spoken commands with a relatively high degree of accuracy. Since SALMONN only uses training data based on textual commands, listening to spoken commands is also a cross-modal emergent ability.

Here are some examples of SALMONN.

🌈 How to train a model

For SALMONN-13B v1, you need to use the following dependencies:

  1. Our environment: The python version is 3.9.17, and other required packages can be installed with the following command: pip install -r requirements.txt.
  2. Download whisper large v2 to whisper_path.
  3. Download Fine-tuned BEATs_iter3+ (AS2M) (cpt2) to beats_path.
  4. Download vicuna 13B v1.1 to llama_path.
  5. Running with python3 train.py --cfg-path configs/config.yaml in A100-SXM-80GB.

🌈 How to inference in CLI

  1. Same as How to train a model: 1-4.
  2. Download salmonn v1 to ckpt.
  3. Running with python3 cli_inference.py --cfg-path configs/decode_config.yaml in A100-SXM-80GB. Now you can input wav_path and prompt. Enjoy yourself !

🌈 How to launch a web demo

  1. Same as How to train a model: 1-4.
  2. Download salmonn v1 to ckpt.
  3. Running with python3 web_demo.py --cfg-path configs/decode_config.yaml in A100-SXM-80GB.

👀 Team

Team Tsinghua: Wenyi Yu, Changli Tang, Guangzhi Sun, Chao Zhang

Team ByteDance: Xianzhao Chen, Wei Li, Tian Tan, Lu Lu, Zejun Ma

✨ Citation

If you find SALMONN useful, please cite our paper:

@inproceedings{
  tang2024salmonn,
  title={{SALMONN}: Towards Generic Hearing Abilities for Large Language Models},
  author={Changli Tang and Wenyi Yu and Guangzhi Sun and Xianzhao Chen and Tian Tan and Wei Li and Lu Lu and Zejun MA and Chao Zhang},
  booktitle={The Twelfth International Conference on Learning Representations},
  year={2024},
  url={https://openreview.net/forum?id=14rn7HpKVk}
}
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

白日梦AI

白日梦AI提供专注于AI视频生成的多样化功能,包括文生视频、动态画面和形象生成等,帮助用户快速上手,创造专业级内容。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

讯飞绘镜

讯飞绘镜是一个支持从创意到完整视频创作的智能平台,用户可以快速生成视频素材并创作独特的音乐视频和故事。平台提供多样化的主题和精选作品,帮助用户探索创意灵感。

Project Cover

讯飞文书

讯飞文书依托讯飞星火大模型,为文书写作者提供从素材筹备到稿件撰写及审稿的全程支持。通过录音智记和以稿写稿等功能,满足事务性工作的高频需求,帮助撰稿人节省精力,提高效率,优化工作与生活。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号