Project Icon

Retinexformer

Retinexformer:高效低光照图像增强工具,支持15个基准测试和超高分辨率

Retinexformer是一个低光照图像增强项目,支持超过15个基准测试和超高分辨率图像(最高4000x6000)。该项目在NTIRE 2024挑战中获得第二名,提供代码、预训练模型和训练日志。Retinexformer框架支持分布式数据并行和混合精度训练,自适应分割测试策略显著提升模型性能。

Flux.1-dev-Controlnet-Upscaler - 基于ControlNet的Flux.1-dev兼容图像超分辨率模型
ControlNetGithubHuggingface人工智能图像增强图像处理图像超分辨率开源项目模型
Jasper研究团队开发的Flux.1-dev ControlNet超分辨率模型,专门处理低分辨率图像。采用合成复杂数据降质方案训练,可将图像分辨率提升4倍。基于diffusers库实现,支持高斯噪声、泊松噪声、图像模糊和JPEG压缩等多种图像降质处理。该模型与Flux.1-dev完全兼容,提供高质量的图像超分辨率功能。
CAT - 创新图像恢复模型 强化远程特征建模
GithubTransformer卷积神经网络图像修复开源项目自注意力机制长程依赖
CAT是一种创新的图像恢复模型,采用矩形窗口自注意力机制扩大特征提取范围。模型通过水平和垂直矩形窗口并行聚合特征,实现窗口间交互。结合CNN的局部特性,CAT在全局-局部特征耦合方面表现出色。实验证实该方法在多种图像恢复任务中超越了现有技术水平。
MST - 多阶段光谱重建工具箱及算法
GithubMST++NTIRE 2022Spectral Compressive ImagingTransformer开源项目高光谱图像重建
本页面介绍了支持15种以上算法的光谱压缩成像重建工具箱,包括MST++等在NTIRE挑战中获奖的前沿方法。页面列出了TwIST、GAP-TV、DeSCI等顶级光谱重建算法,还提供了相关代码、预训练模型和实验结果,方便研究者进一步研究与应用。
HAT - 激活更多像素的图像超分辨率转换器
GithubHATTransformer图像超分辨率开源项目深度学习计算机视觉
HAT是一个开源的图像超分辨率项目,采用混合注意力转换器架构。它在Set5、Urban100等数据集上达到了最先进水平,参数量为20.8M。HAT还提供了小型模型版本和用于真实世界超分辨率的GAN模型,能够处理各种图像重建任务。
Awesome-ICCV2023-Low-Level-Vision - ICCV2023低层视觉研究论文与代码资源汇总
Github低层视觉去噪去模糊图像恢复开源项目超分辨率
该项目整理汇总了ICCV2023会议发表的低层视觉领域论文和相关代码实现。内容涵盖图像恢复、超分辨率、去噪、去模糊等多个研究方向,并进行了分类整理。项目提供论文链接和代码仓库地址,方便研究者快速查找所需资源。同时还收录了其他相关会议的低层视觉论文集合链接,为该领域研究提供全面的参考资料。
MDT - MDTv2图像合成模型:更快收敛和卓越性能
GithubMasked Diffusion Transformer人工智能图像合成开源项目深度学习计算机视觉
MDTv2是一种先进的深度学习图像合成模型,在ImageNet数据集上实现了1.58的FID分数,创造新的业界标准。该模型采用掩码潜在建模技术,提高了图像语义理解能力,学习速度比先前模型快10倍以上。MDTv2在图像生成质量和训练效率方面都有显著提升,为计算机视觉和人工智能领域带来了新的可能性。
controlnet-tile-sdxl-1.0 - ControlNet技术在图像处理中的最新应用探索
ControlNet Tile SDXLGithubHuggingface人工智能图像去模糊图像超分辨率开源项目模型生成式图像处理
该项目展示了如何利用ControlNet技术实现图像的去模糊、变体生成和超分辨率处理。通过整合多种图像处理器和pipelines,支持多种比率和倍数的放大,简化了操作过程,并提高了图像质量。项目代码提供了应用高斯模糊、引导滤波及多维采样的示例,可以通过详细提示生成更高质量和多样化的图像,提高细节再现能力。
Real-ESRGAN - 开源AI图像超分辨率增强项目
AI模型GithubReal-ESRGAN图像修复开源项目超分辨率
Real-ESRGAN是一个开源的AI图像超分辨率增强项目。该项目采用纯合成数据训练,可提升各类图像和视频质量。Real-ESRGAN提供多个预训练模型,适用于通用、动漫、人脸等场景,支持4倍及以上放大。项目包含Python脚本和便携式可执行文件,方便快速使用。此外,Real-ESRGAN开放训练代码,允许在自定义数据集上进行微调。
edsr-base - 轻量级单图像超分辨率深度残差网络
DIV2KEDSRGithubHuggingface图像超分辨率开源项目模型深度学习计算机视觉
EDSR-base是一种轻量级单图像超分辨率深度学习模型,基于增强型深度残差网络架构。该模型在DIV2K数据集上预训练,支持2倍、3倍和4倍图像放大。与原始EDSR相比,EDSR-base采用16个残差块和64个通道,模型大小约5MB。在多个基准数据集上,其PSNR和SSIM指标均优于双三次插值。研究者可通过super-image库使用该模型进行图像放大实验。
multispectral-object-detection - 多光谱图像融合的高效目标检测方法
GithubTransformerYOLOv5多光谱目标检测开源项目计算机视觉跨模态融合
该项目提出了Cross-Modality Fusion Transformer (CFT)多光谱目标检测方法,利用Transformer架构融合RGB和热红外图像信息。CFT在FLIR、LLVIP等数据集上取得了优秀的检测结果,尤其在夜间场景表现突出。这为多光谱目标检测提供了一种新的解决方案。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

白日梦AI

白日梦AI提供专注于AI视频生成的多样化功能,包括文生视频、动态画面和形象生成等,帮助用户快速上手,创造专业级内容。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

讯飞绘镜

讯飞绘镜是一个支持从创意到完整视频创作的智能平台,用户可以快速生成视频素材并创作独特的音乐视频和故事。平台提供多样化的主题和精选作品,帮助用户探索创意灵感。

Project Cover

讯飞文书

讯飞文书依托讯飞星火大模型,为文书写作者提供从素材筹备到稿件撰写及审稿的全程支持。通过录音智记和以稿写稿等功能,满足事务性工作的高频需求,帮助撰稿人节省精力,提高效率,优化工作与生活。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号