Project Icon

SapBERT-from-PubMedBERT-fulltext-mean-token

生物医学实体表示自对齐预训练模型

SapBERT是基于PubMedBERT开发的生物医学预训练模型,采用自对齐技术优化实体语义表示。该模型在医学实体链接任务中表现卓越,创下多项基准测试新纪录。它能有效捕捉精细语义关系,为实体链接等任务提供强大支持。研究人员可通过简单的代码实现实体嵌入提取,便于进行生物医学文本分析。

scibert_scivocab_uncased - 为科学文本优化的预训练BERT语言模型
GithubHuggingfaceSciBERT开源项目模型科学文本自然语言处理语言模型预训练模型
SciBERT是一个专门针对科学文本的预训练语言模型。该模型基于114万篇科学论文全文训练,包含31亿个标记。SciBERT采用自定义科学词汇表,提供大小写敏感和不敏感两种版本。这个模型在科学文本处理任务中表现优异,是科研工作者的有力工具。研究人员可根据具体需求选择合适的模型版本,从而提高科学文本相关的自然语言处理任务效果。
ner-bert-german - 基于BERT的德语命名实体识别模型实现精准NER分析
BERTGithubHuggingface命名实体识别开源项目德语机器学习模型自然语言处理
该模型通过对bert-base-multilingual-cased进行微调,实现德语文本中位置、组织和人名的识别。模型在wikiann数据集训练后,总体F1分数达0.8829,在人名实体识别方面表现尤为出色。模型使用Adam优化器和线性学习率调度器,经7轮训练完成。
sentiment_analysis_model - BERT模型的情感分析应用
BERTGithubHuggingface开源项目情感分析无监督学习模型模型描述预训练
该情感分析模型基于BERT,在大规模英语语料的自监督训练基础上,具备双向语句理解能力,经过精细调优,专注于文本分类任务,该项目微调BERT模型以进行情感分析,可用于自动提取文本中的情感特征。
DNABERT - DNABERT:用于基因组DNA语言处理的双向编码器模型
BERTDNABERTGPUGithub基因组开源项目预训练模型
DNABERT提供完整的源码、使用示例、预训练和微调模型,适用于各类基因组DNA语言处理任务。该项目利用Huggingface的扩展工具,增添了多任务支持和高效的可视化功能。最新版DNABERT-2不仅提升了多物种基因组的处理能力,还发布了全面的Genome Understanding Evaluation (GUE)基准测试,涵盖28个数据集。
roberta-es-clinical-trials-ner - 西班牙语临床试验文本的医学命名实体识别模型
GithubHuggingfaceUMLSroberta-es-clinical-trials-ner临床试验医学命名实体识别开源项目模型西班牙语
这是一个针对西班牙语临床试验文本的医学命名实体识别模型。它可以识别四类语义实体:解剖结构、化学物质、疾病和医疗程序。模型基于bsc-bio-ehr-es预训练模型微调而来,在评估集上展现出较高的准确率和F1值。目前该模型仍在开发中,主要用于分析临床试验相关文本,不适合直接应用于医疗决策。
deid_roberta_i2b2 - RoBERTa模型用于医疗记录去标识化
GithubHIPAAHuggingfaceI2B2RoBERTa医疗记录去标识化开源项目模型自然语言处理
这是一个基于RoBERTa的序列标注模型,专门用于医疗记录去标识化。模型能识别11种受保护健康信息类型,采用BILOU标记方案。在I2B2 2014数据集上训练后,可自动从医疗记录中移除敏感信息。项目提供了使用说明、数据格式要求和示例代码,便于快速应用。
MedicalGPT - 优化医疗GPT模型,提升医疗对话系统的响应与精确性
GithubMedicalGPT医患对话医疗大模型开源项目强化学习微调
MedicalGPT项目采用多阶段方法如增量预训练、精细微调及奖励建模强化学习,优化医疗GPT模型,增强医疗对话与问答系统的性能。模型以人类反馈为基础,通过直接偏好优化和强化学习策略,调整生成对话的质量与人类偏好的契合度,提供科学准确的医疗咨询,项目持续接入先进的医疗语言处理技术,应对医疗领域的需求变化。
BERT-Relation-Extraction - 改进BERT模型在关系抽取任务中的应用与效果分析
ALBERTBERTGithubPython关系抽取开源项目预训练
该项目实现了ACL 2019论文《Matching the Blanks: Distributional Similarity for Relation Learning》的PyTorch开源版本,涵盖BERT、ALBERT和BioBERT三种模型。项目提供预训练和微调方法,并通过SemEval 2010任务8和FewRel数据集验证了模型在关系抽取任务中的表现。
bert-base-NER-uncased - BERT基础模型应用于命名实体识别的开源项目
GithubHuggingfaceMIT许可证免责条款开源许可开源项目模型版权声明软件分发
该项目基于BERT的bert-base-uncased模型,通过微调实现了命名实体识别(NER)功能。模型能有效识别文本中的实体,支持多种语言和实体类别,包括人名、地名、组织机构等。在多个NER数据集上展现了优异性能,模型参数规模约1.1亿。项目为自然语言处理研究人员和开发者提供了一个强大的工具,可用于提取各类文本中的关键实体信息,适用于信息抽取、问答系统等多种应用场景。
bertweet-large - 大规模英语推文预训练模型,面向社交媒体文本
BERTweetCOVID-19English TweetsGithubHuggingface开源项目模型语言模型预训练
BERTweet是首个面向英语推文的大规模预训练模型,基于RoBERTa程序开发,语料库包含2012至2019年间的8.45亿条推文及500万条涉及COVID-19的推文。在任务性能上,BERTweet在词性标注、命名实体识别、情感分析以及讽刺检测等方面表现出色,是分析推文内容的有效工具。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号