Project Icon

Segment-Any-Anomaly

基于混合提示正则化的零样本异常分割方法

Segment-Any-Anomaly项目提出了一种基于混合提示正则化的零样本异常分割方法。该方法通过适配Grounding DINO和Segment Anything等基础模型,实现了对多种异常检测数据集的高效分割。项目在MVTec-AD、VisA等公开数据集上展现出优秀性能,并在VAND工作坊竞赛中取得佳绩。仓库包含完整代码实现、演示和使用说明,便于研究者复现和应用。

Depth-Anything - 大规模无标注数据驱动的强大单目深度估计模型
Depth AnythingGithub人工智能图像处理开源项目深度估计计算机视觉
Depth Anything是一款基于大规模数据训练的单目深度估计模型。它利用150万标注图像和6200万无标注图像进行训练,提供小型、中型和大型三种预训练模型。该模型不仅支持相对深度和度量深度估计,还可用于ControlNet深度控制、场景理解和视频深度可视化等任务。在多个基准数据集上,Depth Anything的性能超越了此前最佳的MiDaS模型,展现出优异的鲁棒性和准确性。
evf-sam2 - EVF-SAM优化文本引导的Segment Anything Model性能
EVF-SAMGithubHuggingface图像分割开源项目模型深度学习视觉语言融合计算机视觉
EVF-SAM项目利用早期视觉语言融合技术,提高了文本引导的Segment Anything Model性能。该开源项目为图像和视频分割任务提供解决方案,支持文本提示输入。用户可在GitHub获取源代码,通过inference.py和inference_video.py文件了解使用方法。目前需从源代码导入模型脚本,尚不支持AutoModel.from_pretrained(...)功能。
ad_examples - 主动异常发现算法提升异常检测效率
AADGithubPython主动学习开源项目异常检测机器学习
ad_examples是一个异常检测Python库,实现了主动异常发现(AAD)算法。项目包含多种检测技术,涵盖无监督、时间序列和人机交互场景。AAD算法利用专家反馈和集成学习提高检测效率。库提供详细文档和API,适合异常检测研究和应用。
pytorch-ood - 基于PyTorch的深度学习异常检测库
GithubPyTorch开源项目异常检测机器学习深度学习神经网络
pytorch-ood是一个专为深度学习设计的异常检测库。该库提供多种检测方法、损失函数、数据集和神经网络架构,支持预训练权重,并兼容pytorch-lightning等框架。它涵盖开放集识别、新颖性检测、置信度估计等领域,采用统一的异常分数约定,方便比较不同方法。这个基于PyTorch的工具库为研究人员和开发者提供了全面的异常检测解决方案。
SAM-Med2D - 医学图像分割新突破 SAM-Med2D模型
GithubSAM-Med2D医学图像分割开源项目数据集模型训练模型评估
SAM-Med2D是基于Segment Anything Model的医学图像分割模型,在包含4.6M图像和19.7M掩码的大规模数据集上进行微调。该项目涵盖10种医学数据模态、4种解剖结构和病变,以及31个主要人体器官。SAM-Med2D在多个测试集上表现优秀,尤其在点提示和边界框提示方面效果显著,为医学图像分割领域提供了新的解决方案。
X-AnyLabeling - 图像处理与多模型支持的标注工具
GithubX-AnyLabeling人工智能标注图像识别开源项目模型支持视频处理
X-AnyLabeling是一个集合先进模型技术的强大标注工具,集成AI推理引擎,支持图像与视频处理。该工具支持单帧与批量预测,适用于分类、检测、分割和OCR等视觉任务,兼容多种标注样式与主流标签格式。通过使用GPU加速推理,X-AnyLabeling 保证高效率和高精度的处理性能,突出其技术优势。
SAMed - 基于SAM的高效医学图像分割模型
GithubLoRASAMedSegment Anything Model医学图像分割多器官分割开源项目
SAMed是一种基于Segment Anything Model的医学图像分割方法,通过低秩适应微调策略优化SAM模型。在Synapse多器官分割数据集上,SAMed达到81.88 DSC和20.64 HD的性能。由于仅更新部分参数,SAMed具有低部署和存储成本的优势。研究团队还推出了性能更高的SAMed_h版本,为医学影像分析提供了新的解决方案。
grounding-dino-tiny - Grounding DINO模型实现开放集目标检测的创新突破
GithubGrounding DINOHuggingface开源项目模型深度学习目标检测计算机视觉零样本学习
Grounding DINO模型通过结合DINO与接地预训练技术,实现了开放集目标检测。该模型添加文本编码器,扩展了传统闭集检测模型的能力,可进行零样本目标检测。在COCO数据集上,Grounding DINO取得了52.5 AP的优秀成绩,为计算机视觉中未标记物体的识别提供了新的解决方案。
sssegmentation - 开源语义分割工具箱 集成多种先进算法和模型
GithubPyTorch开源工具开源项目深度学习计算机视觉语义分割
sssegmentation是基于PyTorch的开源语义分割工具箱,提供高性能、模块化设计和统一基准测试。它集成多种流行分割框架,支持各类backbone网络和分割器模型,包括SAM、MobileSAM等最新技术。该项目为语义分割研究和应用开发提供灵活易用的平台。
MaskDINO - 统一的Transformer架构革新目标检测与分割任务
GithubMask DINOtransformer图像分割开源项目深度学习目标检测
MaskDINO项目提出统一的Transformer架构,整合目标检测、全景分割、实例分割和语义分割任务。该架构实现检测与分割的协同,并在COCO、ADE20K和Cityscapes等主要数据集上取得领先成果。在相同条件下,MaskDINO的性能超越了现有方法,展现出在视觉任务中的卓越潜力。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号