Project Icon

tweet-topic-21-multi

适用于英文多标签话题分类的推文模型

tweet-topic-21-multi模型基于TimeLMs语言模型开发,通过对2018年1月至2021年12月间发布的超过1.24亿条推文进行训练,实现了多标签话题分类功能。模型采用11,267条推文进行微调,涵盖艺术文化、商业、科技、体育等多种话题,适用于需要高精度英文文本多标签分类的任务。

twitter-roberta-base-dec2021-tweet-topic-multi-all - 基于RoBERTa的多标签推文主题分类模型
GithubHuggingfaceTwitter RoBERTa多标签分类开源项目文本分类机器学习模型模型自然语言处理
这是一个基于twitter-roberta-base-dec2021的微调模型,专注于多标签推文主题分类。模型在tweet_topic_multi数据集上训练,在test_2021测试集上实现76.48%的微平均F1分数。它能有效识别社交媒体文本中的多个主题,为内容分析提供了可靠的自然语言处理工具。
twitter-roberta-base-emotion-multilabel-latest - 精确识别推文情绪的多标签分类模型
GithubHuggingfacetweetnlptwitter-roberta-base-emotion-multilabel-latest多标签分类开源项目情感分析机器学习模型
该项目微调了cardiffnlp/twitter-roberta-base-2022-154m模型,专注于SemEval 2018情感分析任务,显著增强推文的多标签情绪分类能力。模型在测试集上的F1 micro为0.7169,F1 macro为0.5464,是推文情感分析的理想选择。适用于tweetnlp和transformers中的文本分类任务,支持通过Python加载工具进行灵活使用,有助于社交媒体情感解析。
twitter-xlm-roberta-base-sentiment-multilingual - XLM-RoBERTa模型在多语言推特情感分析中的应用
GithubHuggingfaceXLM-RoBERTasentiment analysistweetnlp多语言开源项目文本分类模型
本项目是基于cardiffnlp/twitter-xlm-roberta-base模型针对多语言推特情感分析进行的微调。模型在cardiffnlp/tweet_sentiment_multilingual数据集上训练,通过tweetnlp库实现。测试结果显示,模型在F1分数和准确率方面均达到约69%的性能。研究人员和开发者可使用简单的Python代码调用此模型,为多语言社交媒体内容分析提供了实用的解决方案。
twitter-xlm-roberta-base - XLM-T 基于推特的多语言模型用于情感分析和跨语言任务
GithubHuggingfaceXLM-Roberta-base多语言开源项目情感分析推特模型自然语言处理
XLM-T是一个基于XLM-RoBERTa架构的多语言模型,通过1.98亿条多语言推文训练而成。该模型专门用于Twitter数据分析,支持30多种语言的情感分析和跨语言相似度计算。XLM-T还提供了一个覆盖8种语言的统一Twitter情感分析数据集,可作为多语言自然语言处理任务的基准模型,并支持针对特定应用场景的进一步微调。
twitter-xlm-roberta-base-sentiment - 基于XLM-roBERTa的多语言推特情感分析模型
GithubHuggingfaceTwitterXLM-roBERTa多语言情感分析开源项目情感分类模型自然语言处理
这是一个基于XLM-roBERTa的多语言推特情感分析模型,经过约1.98亿条推文预训练,并针对8种语言的情感分析任务进行了微调。该模型可以轻松集成到NLP管道中,适用于多语言社交媒体文本的情感分类,支持阿拉伯语、英语、法语、德语、印地语、意大利语、西班牙语和葡萄牙语。
twitter-roberta-large-2022-154m - 训练于154M推文的RoBERTa-large模型(2022年数据)及其应用
GithubHuggingfaceRoBERTa-large开源项目推特掩码语言模型模型特征提取自然语言处理
本项目提供了一种经过2022年12月底前154M条推文训练的RoBERTa-large模型,主要用于推文数据的理解和解析。它通过Twitter Academic API获取并过滤推文,实现了高级文本预处理、掩码语言模型和特征提取的应用示例。用户可借助标准Transformers接口进行推文分析及嵌入提取,同时适用于对比在不同时间段训练的模型的预测结果和困惑度得分,为研究人员提供更深入分析推特时间序列数据的工具。
twitter-roberta-base-sentiment-latest - RoBERTa基础的推特情感分析模型 支持英文社交媒体文本
GithubHuggingfaceRoBERTaTweetEvalTwitter开源项目情感分析模型自然语言处理
这是一个基于RoBERTa-base的推特情感分析模型,通过1.24亿条推文训练并针对情感分析任务微调。模型可将英文推文分类为积极、中性或消极,支持Transformers库集成。适用于社交媒体分析和舆情监测等场景,是TweetNLP项目的组成部分,体现了社交媒体自然语言处理的最新进展。
twitter-xlm-roberta-base-sentiment-finetunned - XLM-RoBERTa微调的多语言Twitter情感分析模型
GithubHuggingfaceXLM-Roberta多语言模型开源项目情感分类文本分类模型模型微调
该模型是Citizen Lab团队基于XLM-RoBERTa架构微调的多语言Twitter情感分类器。支持英语、荷兰语、法语等10种语言,可准确识别文本的正面、负面和中性情感。模型在F1分数和准确率方面表现出色,使用简单,适用于多种社交媒体情感分析场景。
autonlp-Tweet-Sentiment-Extraction-20114061 - AutoNLP推文情感分析模型达80%准确率
AutoNLPGithubHuggingface开源项目情感分析机器学习模型模型训练自然语言处理
这是一个基于AutoNLP训练的多类别分类模型,主要应用于推文情感提取分析。模型在验证集上的准确率为80.36%,F1分数为0.807。开发者可通过cURL或Python API调用该模型进行推文情感分析,适用于社交媒体数据分析和用户反馈处理等场景。
twitter-roberta-large-hate-latest - 增强的多类别仇恨言论检测模型
GithubHuggingfaceRoBERTaSuperTweetEval仇恨言论检测开源项目推特文本分类模型
此RoBERTa-large模型基于154M推文数据进行训练,并在SuperTweetEval数据集上进行微调,以实现仇恨言论的多类别分类检测。模型能够准确识别多种仇恨类型,包括性别、种族和宗教等,为社交媒体内容管理提供支持。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

白日梦AI

白日梦AI提供专注于AI视频生成的多样化功能,包括文生视频、动态画面和形象生成等,帮助用户快速上手,创造专业级内容。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

讯飞绘镜

讯飞绘镜是一个支持从创意到完整视频创作的智能平台,用户可以快速生成视频素材并创作独特的音乐视频和故事。平台提供多样化的主题和精选作品,帮助用户探索创意灵感。

Project Cover

讯飞文书

讯飞文书依托讯飞星火大模型,为文书写作者提供从素材筹备到稿件撰写及审稿的全程支持。通过录音智记和以稿写稿等功能,满足事务性工作的高频需求,帮助撰稿人节省精力,提高效率,优化工作与生活。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号