Project Icon

twitter-roberta-large-hate-latest

增强的多类别仇恨言论检测模型

此RoBERTa-large模型基于154M推文数据进行训练,并在SuperTweetEval数据集上进行微调,以实现仇恨言论的多类别分类检测。模型能够准确识别多种仇恨类型,包括性别、种族和宗教等,为社交媒体内容管理提供支持。

sentiment-roberta-large-english-3-classes - 基于RoBERTa的英文情感分析模型,精确分类社交媒体情感
GithubHuggingfaceRoBERTa准确率开源项目情感分析模型社交媒体
该模型使用RoBERTa进行三类情感分类(正面、中性、负面),特别适合社交媒体文本。通过5,304条社交媒体帖子进行微调,达到了86.1%的准确率。可通过transformers库轻松集成,提高文本分类的精准性和效率。
twitter-xlm-roberta-base - XLM-T 基于推特的多语言模型用于情感分析和跨语言任务
GithubHuggingfaceXLM-Roberta-base多语言开源项目情感分析推特模型自然语言处理
XLM-T是一个基于XLM-RoBERTa架构的多语言模型,通过1.98亿条多语言推文训练而成。该模型专门用于Twitter数据分析,支持30多种语言的情感分析和跨语言相似度计算。XLM-T还提供了一个覆盖8种语言的统一Twitter情感分析数据集,可作为多语言自然语言处理任务的基准模型,并支持针对特定应用场景的进一步微调。
twitter-xlm-roberta-base-sentiment-multilingual - XLM-RoBERTa模型在多语言推特情感分析中的应用
GithubHuggingfaceXLM-RoBERTasentiment analysistweetnlp多语言开源项目文本分类模型
本项目是基于cardiffnlp/twitter-xlm-roberta-base模型针对多语言推特情感分析进行的微调。模型在cardiffnlp/tweet_sentiment_multilingual数据集上训练,通过tweetnlp库实现。测试结果显示,模型在F1分数和准确率方面均达到约69%的性能。研究人员和开发者可使用简单的Python代码调用此模型,为多语言社交媒体内容分析提供了实用的解决方案。
roberta-hate-speech-dynabench-r4-target - 动态数据集驱动的在线仇恨检测模型
GithubHuggingfaceLFTWR4 Target动态生成数据集在线仇恨检测开源项目模型深度学习
roberta-hate-speech-dynabench-r4-target是一个基于动态生成数据集的在线仇恨检测模型。该模型源自'Learning from the Worst'研究,旨在通过创新的数据生成方法提高AI系统识别网络仇恨言论的准确性。作为R4 Target系列的一部分,这个模型代表了在线内容审核技术的最新进展,为构建更安全的互联网环境提供了有力工具。
unbiased-toxic-roberta - RoBERTa模型识别多语言有毒评论并减少偏见
DetoxifyGithubHuggingface开源项目有毒评论分类机器学习模型模型评估自然语言处理
该项目开发了基于RoBERTa的多语言模型,用于检测互联网上的有毒评论。模型在Jigsaw三个挑战数据集上训练,可识别威胁、侮辱和仇恨言论等多种有毒内容。它支持多种语言,易于使用,适用于研究和内容审核。项目还探讨了模型的局限性和伦理问题,努力减少对特定群体的意外偏见。
sentiment-roberta-large-english - RoBERTa微调的通用英文情感分析模型
GithubHuggingfaceRoBERTaSiEBERT开源项目情感分析机器学习模型自然语言处理
sentiment-roberta-large-english是一个基于RoBERTa-large的微调模型,用于英文文本的二元情感分析。该模型在15个不同来源的数据集上进行了训练和评估,提高了对各种文本类型的泛化能力。在新数据上,其表现优于仅在单一类型文本上训练的模型,平均准确率为93.2%。模型可通过Hugging Face pipeline快速部署,也可作为进一步微调的基础。
toxigen_roberta - 基于大规模数据集的隐含仇恨言论检测模型
GithubHuggingfaceToxiGen开源项目数据集文本分类机器学习模型隐式仇恨言论检测
ToxiGen是一个专门用于检测隐含和对抗性仇恨言论的机器学习模型。该模型基于大规模机器生成的数据集训练而成,源自一篇关于隐含仇恨言论检测的学术研究。ToxiGen提供了训练数据集和详细信息,为研究人员和开发者在改进在线内容审核方面提供了有力支持。这一工具有助于构建更安全的在线交流环境,对于社交媒体平台和内容管理系统具有重要应用价值。
twitter-roberta-base-dec2021-tweet-topic-multi-all - 基于RoBERTa的多标签推文主题分类模型
GithubHuggingfaceTwitter RoBERTa多标签分类开源项目文本分类机器学习模型模型自然语言处理
这是一个基于twitter-roberta-base-dec2021的微调模型,专注于多标签推文主题分类。模型在tweet_topic_multi数据集上训练,在test_2021测试集上实现76.48%的微平均F1分数。它能有效识别社交媒体文本中的多个主题,为内容分析提供了可靠的自然语言处理工具。
twitter-roberta-base-irony - RoBERTa推文讽刺检测模型:TweetEval基准训练
GithubHuggingfaceTweetEvalroBERTa开源项目推特分析模型自然语言处理讽刺检测
此模型是基于RoBERTa架构的推文讽刺检测工具,通过TweetEval基准对约5800万条推文进行训练和微调。模型可有效识别文本中的讽刺内容,为自然语言处理研究提供支持。已集成至TweetNLP Python库,便于研究人员和开发者使用。模型提供详细使用示例,并支持表情符号识别、情感分析等多项相关任务。
roberta_toxicity_classifier - RoBERTa模型提供准确的有害评论分类功能
GithubHuggingfaceJigsawRoBERTa平行语料库开源项目有毒评论分类模型自然语言处理
本项目基于RoBERTa开发了一个有害评论分类模型。该模型在约200万条Jigsaw数据集样本上进行微调,测试集表现优异,AUC-ROC达0.98,F1分数为0.76。模型易于集成到Python项目中,可用于文本有害内容检测。项目提供使用说明和引用信息,便于研究人员和开发者在此领域深入探索。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号