Project Icon

tct_colbert-msmarco

知识蒸馏技术驱动的密集文档检索深度学习模型

TCT-ColBERT是一个采用知识蒸馏技术的密集文档检索模型。该模型通过教师模型紧耦合方法,实现了BERT模型的轻量化,在维持检索效果的同时提高了运行效率。项目支持Pyserini框架集成,提供完整的模型实现代码。

tct_colbert-v2-hnp-msmarco - TCT-ColBERT-V2 模型的变体再现与知识蒸馏整合
GithubHuggingfacePyseriniTCT-ColBERT-V2否定样本密集检索开源项目模型知识蒸馏
该项目旨在再现 TCT-ColBERT-V2 的变体,通过知识蒸馏与批内负例实现高效密集检索。详细的实验报告已发布在 Pyserini 上,为研究人员提供再现过程和结果分析。
colbertv2.0 - 基于BERT的大规模文本快速检索模型
ColBERTGithubHuggingface向量检索开源项目搜索模型模型深度学习自然语言处理
ColBERT v2是一个开源的文本检索模型,基于BERT架构,采用细粒度上下文后期交互技术。它能在毫秒级内对大规模文本集合进行快速准确的搜索,同时保持高质量检索结果。该模型支持索引构建、检索搜索和模型训练等功能,并提供预训练模型和Python API。ColBERT v2在GitHub上持续更新,适用于需要高效文本检索的应用场景。
mxbai-colbert-large-v1 - ColBERT大型双编码器模型实现快速信息检索和语义匹配
AI绘图GithubHugging FaceHuggingface人工智能开源项目机器学习模型深度学习
mxbai-colbert-large-v1是基于ColBERT架构的双编码器模型,专注于高效信息检索和语义匹配。该模型在保持高精度的同时显著提升了检索速度,支持多语言处理。其预训练赋予了强大的语义理解能力,适用于问答系统、文档检索等多种搜索和匹配任务场景。
ms-marco-TinyBERT-L-2-v2 - MS Marco跨编码器模型实现高效文本检索与重排序
Cross-EncoderGithubHuggingfaceMS MarcoTransformers信息检索句子相似度开源项目模型
ms-marco-TinyBERT-L-2-v2是一款基于MS Marco Passage Ranking任务训练的跨编码器模型。该模型专注于信息检索和文本重排序,能够高效编码查询和文档段落并评估相关性。在TREC Deep Learning 2019和MS Marco数据集上表现卓越,NDCG@10达到69.84,MRR@10达到32.56。模型提供多个版本,在性能和速度间取得平衡,每秒可处理9000个文档,适用于不同应用场景。
ColBERT - 基于BERT的快速大规模文本检索模型
BERTColBERTGithub信息检索向量相似度开源项目自然语言处理
ColBERT是一种基于BERT的检索模型,能在数十毫秒内实现大规模文本集合的高效搜索。该模型采用细粒度的上下文后期交互技术,将段落编码为令牌级嵌入矩阵,在保持检索质量的同时提高效率。ColBERT具备索引、检索和训练功能,适用于多种信息检索任务。模型提供预训练checkpoint和Python API,方便研究人员和开发者在实际项目中快速应用。
ms-marco-TinyBERT-L-2 - 针对MS Marco段落排序优化的TinyBERT-L-2跨编码器
Cross-EncoderGithubHuggingfaceMS Marco信息检索开源项目机器学习模型自然语言处理
ms-marco-TinyBERT-L-2是一个为MS Marco段落排序任务优化的跨编码器模型。在TREC Deep Learning 2019和MS Marco段落重排任务中,它的NDCG@10和MRR@10分别达到69.84和32.56。模型每秒可处理9000个文档,为信息检索提供高效准确的解决方案。研究人员可通过Transformers或SentenceTransformers库使用该模型进行查询-段落对的相关性评分。
distilbert-dot-tas_b-b256-msmarco - 基于平衡主题感知采样的高效密集检索方案
BERT_DotDistilBertGithubHuggingfaceMSMARCO开源项目文本检索模型知识蒸馏
本项目提供了一个基于DistilBERT的密集文本检索模型,采用双编码器结构和点积评分机制。该模型使用平衡主题感知采样(TAS-B)方法在MS MARCO数据集上训练,可用于候选集重排序或直接进行向量索引密集检索。模型在多个测试集上展现出优于BM25基线的检索性能。其特点包括高效训练(单GPU 48小时内完成)和保留原始DistilBERT的6层架构。这一方案为高效密集检索提供了新的解决思路。
jina-colbert-v1-en - JinaBERT基础的长文档检索用ColBERT模型
GithubHuggingfaceJina-ColBERTMSMARCO对比结果开源项目检索性能模型长上下文
Jina-ColBERT是一个基于JinaBERT的ColBERT模型,它能处理8k的上下文长度,实现快速准确的检索。与ColBERTv2相比,使用了jina-bert-v2-base-en为主干,并在MSMARCO数据集上训练,表现优于部分基准模型,尤其在长上下文环境中表现更佳,适用于长文档检索场景。
cocodr-large-msmarco - BERT-large基础的高性能密集检索模型
COCO-DRGithubHuggingFaceHuggingfaceMS MARCO开源项目模型零样本检索预训练模型
cocodr-large-msmarco是一个基于BERT-large架构的密集检索模型,参数量达3.35亿。该模型在BEIR语料库上预训练后,在MS MARCO数据集上微调,采用对比学习和分布鲁棒性学习技术解决零样本密集检索中的分布偏移问题。模型可通过Hugging Face transformers库轻松加载,为信息检索任务提供有力支持。
jina-colbert-v2 - 多语言信息检索的新一代智能模型
ColBERTGithubHuggingface多语言检索嵌入模型开源项目模型神经信息检索语义搜索
jina-colbert-v2是一个多语言信息检索模型,支持128种语言,采用马特里奥什卡嵌入技术实现效率与精度的平衡。该模型具有8192个输入上下文标记和标记级嵌入的可解释性。在BEIR、MS MARCO等基准测试中,jina-colbert-v2展现出优于前代模型和其他主流方案的检索性能。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

白日梦AI

白日梦AI提供专注于AI视频生成的多样化功能,包括文生视频、动态画面和形象生成等,帮助用户快速上手,创造专业级内容。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

讯飞绘镜

讯飞绘镜是一个支持从创意到完整视频创作的智能平台,用户可以快速生成视频素材并创作独特的音乐视频和故事。平台提供多样化的主题和精选作品,帮助用户探索创意灵感。

Project Cover

讯飞文书

讯飞文书依托讯飞星火大模型,为文书写作者提供从素材筹备到稿件撰写及审稿的全程支持。通过录音智记和以稿写稿等功能,满足事务性工作的高频需求,帮助撰稿人节省精力,提高效率,优化工作与生活。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号