Project Icon

gitops-playground

GitOps 运维栈助力 Kubernetes 集群管理实践

gitops-playground 为 Kubernetes 集群提供完整的 GitOps 运维环境。项目集成了 Argo CD 部署工具、Prometheus 和 Grafana 监控系统、Vault 和 External Secrets Operator 密钥管理工具,以及 Jenkins CI/CD 流水线。支持本地集群、公有云和空气隔离环境,便于快速搭建 GitOps 环境,体验现代化的集群运维方案。

gitops-playground

Creates a complete GitOps-based operational stack on your Kubernetes clusters:

The gitops-playground is derived from our experiences in consulting, operating the myCloudogu platform and is used in our GitOps trainings for both Flux and ArgoCD.

Playground features

TL;DR

You can try the GitOps Playground on a local Kubernetes cluster by running a single command:

bash <(curl -s \
  https://raw.githubusercontent.com/cloudogu/gitops-playground/main/scripts/init-cluster.sh) \
  && docker run --rm -t --pull=always -u $(id -u) \
    -v ~/.config/k3d/kubeconfig-gitops-playground.yaml:/home/.kube/config \
    --net=host \
    ghcr.io/cloudogu/gitops-playground --yes --argocd --ingress-nginx --base-url=http://localhost
# If you want to try all features, you might want to add these params: --mail --monitoring --vault=dev

Note that on some linux distros like debian do not support subdomains of localhost. There you might have to use --base-url=http://local.gd (see local ingresses).

See the list of applications to get started.

We recommend running this command as an unprivileged user, that is inside the docker group.

Table of contents

What is the GitOps Playground?

The GitOps Playground provides a reproducible environment for setting up a GitOps-Stack. It provides an image for automatically setting up a Kubernetes Cluster including CI-server (Jenkins), source code management (SCM-Manager), Monitoring and Alerting (Prometheus, Grafana, MailHog), Secrets Management (Hashicorp Vault and External Secrets Operator) and of course Argo CD as GitOps operator.

The playground also deploys a number of example applications.

The GitOps Playground lowers the barriers for operating your application on Kubernetes using GitOps. It creates a complete GitOps-based operational stack on your Kubernetes clusters. No need to read lots of books and operator docs, getting familiar with CLIs, ponder about GitOps Repository folder structures and promotion to different environments, etc.
The GitOps Playground is a pre-configured environment to see GitOps in motion, including more advanced use cases like notifications, monitoring and secret management.

In addition to creating an operational stack in production, you can run the playground locally, for learning and developing new features.

We aim to be compatible with various environments, e.g. OpenShift and in an air-gapped network. The support for these is work in progress.

Installation

There a several options for running the GitOps playground

  • on a local k3d cluster Works best on Linux, but is possible on Windows and Mac.
  • on a remote k8s cluster
  • each with the option
    • to use an external Jenkins, SCM-Manager and registry (this can be run in production, e.g. with a Cloudogu Ecosystem) or
    • to run everything inside the cluster (for demo only)

The diagrams below show an overview of the playground's architecture and three scenarios for running the playground. For a simpler overview including all optional features such as monitoring and secrets management see intro at the very top.

Note that running Jenkins inside the cluster is meant for demo purposes only. The third graphic shows our production scenario with the Cloudogu EcoSystem (CES). Here better security and build performance is achieved using ephemeral Jenkins build agents spawned in the cloud.

Overview

Playground on local machineProduction environment with Cloudogu EcoSystem
Playground on local machineA possible production environment

Create Cluster

You can apply the GitOps playground to

  • a local k3d cluster (see docs or script for more details):
    bash <(curl -s \
      https://raw.githubusercontent.com/cloudogu/gitops-playground/main/scripts/init-cluster.sh)
    
  • a remote k8s cluster on Google Kubernetes Engine (e.g. via Terraform, see our docs),
  • or almost any k8s cluster.
    Note that if you want to deploy Jenkins inside the cluster, you either need Docker as container runtime or set Jenkins up to run its build on an agent that provides Docker.

For the local cluster, you can avoid hitting DockerHub's rate limiting by using a mirror via the --docker-io-registry-mirror parameter.

For example:

bash <(curl -s \
    https://raw.githubusercontent.com/cloudogu/gitops-playground/main/scripts/init-cluster.sh) --docker-io-registry-mirror https://mirror.gcr.io

This parameter is passed on the containerd used by k3d.

In addition, the Jobs run by Jenkins are using the host's Docker daemon.
To avoid rate limits there, you might have to configure a mirror there as well. This can be done in the /etc/docker/daemon.json or in the config of Docker Desktop.

For example:

{
  "registry-mirrors": ["https://mirror.gcr.io"]
}

Apply playground

You can apply the playground to your cluster using our container image ghcr.io/cloudogu/gitops-playground.
On success, the container prints a little intro on how to get started with the GitOps playground.

There are several options for running the container:

  • For local k3d cluster, we recommend running the image as a local container via docker
  • For remote clusters (e.g. on GKE) you can run the image inside a pod of the target cluster via kubectl.

All options offer the same parameters, see below.

Apply via Docker (local cluster)

When connecting to k3d it is easiest to apply the playground via a local container in the host network and pass k3d's kubeconfig.

CLUSTER_NAME=gitops-playground
docker pull ghcr.io/cloudogu/gitops-playground
docker run --rm -t -u $(id -u) \
  -v ~/.config/k3d/kubeconfig-${CLUSTER_NAME}.yaml:/home/.kube/config \
  --net=host \
  ghcr.io/cloudogu/gitops-playground # additional parameters go here

Note:

  • docker pull in advance makes sure you have the newest image, even if you ran this command before.
    Of course, you could also specify a specific version of the image.
  • Using the host network makes it possible to determine localhost and to use k3d's kubeconfig without altering, as it access the API server via a port bound to localhost.
  • We run as the local user in order to avoid file permission issues with the kubeconfig-${CLUSTER_NAME}.yaml.
  • If you experience issues and want to access the full log files, use the following command while the container is running:
docker exec -it \
  $(docker ps -q  --filter ancestor=ghcr.io/cloudogu/gitops-playground) \
  bash -c -- 'tail -f  -n +1 /tmp/playground-log-*'

Apply via kubectl (remote cluster)

For remote clusters it is easiest to apply the playground via kubectl. You can find info on how to install kubectl here.

# Create a temporary ServiceAccount and authorize via RBAC.
# This is needed to install CRDs, etc.
kubectl create serviceaccount gitops-playground-job-executer -n default
kubectl create clusterrolebinding gitops-playground-job-executer \
  --clusterrole=cluster-admin \
  --serviceaccount=default:gitops-playground-job-executer

# Then start apply the playground with the following command:
# To access services on remote clusters, add either --remote or --ingress-nginx --base-url=$yourdomain
kubectl run gitops-playground -i --tty --restart=Never \
  --overrides='{ "spec": { "serviceAccount": "gitops-playground-job-executer" } }' \
  --image ghcr.io/cloudogu/gitops-playground \
  -- --yes --argocd # additional parameters go here. 

# If everything succeeded, remove the objects
kubectl delete clusterrolebinding/gitops-playground-job-executer \
  sa/gitops-playground-job-executer pods/gitops-playground -n default  

In general docker run should work here as well. But GKE, for example, uses gcloud and python in their kubeconfig. Running inside the cluster avoids these kinds of issues.

Additional parameters

The following describes more parameters and use cases.

You can get a full list of all options like so:

docker run -t --rm ghcr.io/cloudogu/gitops-playground --help
Configuration file

You can also use a configuration file to specify the parameters (--config-file or --config-map). That file must be a YAML file.

Note that the config file is not yet a complete replacement for CLI parameters.

You can use --output-config-file to output the current config as set by defaults and CLI parameters.

In addition, For easier validation and auto-completion, we provide a schema file.

For example in Jetbrains IntelliJ IDEA, you can use the schema for autocompletion and validation when you put the following at the beginning of your config file:

# $schema: https://raw.githubusercontent.com/cloudogu/gitops-playground/main/docs/configuration.schema.json

If you work with an older version, you can use a specific git commit ID instead of main in the schema URL.

Then use the context assistant to enable coding assistance or fill in all available properties. See here for the full manual.

example of a config file inside Jetbrains IntelliJ IDEA

Apply via Docker
docker run --rm -t --pull=always -u $(id -u) \
    -v ~/.config/k3d/kubeconfig-gitops-playground.yaml:/home/.kube/config \
    -v $(pwd)/gitops-playground.yaml:/config/gitops-playground.yaml \
    --net=host \
    ghcr.io/cloudogu/gitops-playground --yes --argocd --config-file=/config/gitops-playground.yaml
Apply via kubectl

Create the serviceaccount and clusterrolebinding

$ cat config.yaml # for example
features: 
  monitoring:
    active: true

# Convention:
# Find the ConfigMap inside the current namespace for the config map
# From the config map, pick the key "config.yaml"
kubectl create configmap gitops-config --from-file=config.yaml

kubectl run gitops-playground -i --tty --restart=Never \
  --overrides='{ "spec": { "serviceAccount": "gitops-playground-job-executer" } }' \
  --image ghcr.io/cloudogu/gitops-playground \
  -- --yes --argocd --config-map=gitops-config

Afterwards, you might want to do a clean up. In addition, you might want to delete the config-map as well.

kubectl delete cm gitops-config 
Deploy Ingress Controller

In the default installation the GitOps-Playground comes without an Ingress-Controller.

We use Nginx as default Ingress-Controller. It can be enabled via the configfile or parameter --ingress-nginx.

In order to make use of the ingress controller, it is recommended to use it in conjunction with --base-url, which will create Ingress objects for all components of the GitOps playground.

The ingress controller is based on the helm chart ingress-nginx.

Additional parameters from this chart's values.yaml file can be added to the installation through the gitops-playground configuration file.

Example:

features:
  ingressNginx:
    active: true
    helm:
      values:
        controller:
          replicaCount: 4

In this Example we override the default controller.replicaCount (GOP's default is 2).

This config file is merged with precedence over the defaults set by

Deploy Ingresses

It is possible to deploy Ingress objects for all components. You can either

  • Set a common base url (--base-url=https://example.com) or
  • individual URLS:
--argocd-url https://argocd.example.com 
--grafana-url
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

白日梦AI

白日梦AI提供专注于AI视频生成的多样化功能,包括文生视频、动态画面和形象生成等,帮助用户快速上手,创造专业级内容。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

讯飞绘镜

讯飞绘镜是一个支持从创意到完整视频创作的智能平台,用户可以快速生成视频素材并创作独特的音乐视频和故事。平台提供多样化的主题和精选作品,帮助用户探索创意灵感。

Project Cover

讯飞文书

讯飞文书依托讯飞星火大模型,为文书写作者提供从素材筹备到稿件撰写及审稿的全程支持。通过录音智记和以稿写稿等功能,满足事务性工作的高频需求,帮助撰稿人节省精力,提高效率,优化工作与生活。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号