Project Icon

cohere-toolkit

用于构建和部署RAG应用的开源组件集合

Cohere Toolkit是一个开源项目,提供预构建组件集合用于RAG应用的快速开发和部署。该工具集包含可自定义的界面、后端API和多种模型提供商选项。它集成了默认Web UI、可定制检索工具和数据源,并提供详细部署指南。开发者可以利用Cohere的Command模型,通过Docker在本地环境中轻松部署和测试应用。

ragapp - 简单配置的企业级Agentic RAG方案
DockerGithubLlamaIndexOpenAIRAGapp云基础设施开源项目
RAGapp是一款企业级Agentic RAG解决方案,配置简单如OpenAI的自定义GPT,可通过Docker部署在云基础设施中。基于LlamaIndex构建,支持OpenAI和Gemini托管AI模型以及本地Ollama模型。提供Docker Compose和即将推出的Kubernetes部署选项。访问Admin UI进行配置,详情请参阅各端点和安全信息。
cognita - RAG系统模块化与扩展平台
APICognitaGithub向量数据库开源项目索引部署
Cognita整合了Langchain和LlamaIndex技术,提供了一套模块化且API驱动的RAG组件和无代码UI,适合本地及生产环境使用。新功能包括内置Metadatastore、Docker Compose快速部署及多样化的嵌入和重排序服务。此平台使得用户无需代码即可管理文档和实施QnA,优化了试验和部署的效率。
Cohere - 企业级大语言模型与人工智能平台
AI工具AI开发Cohere CommandCohere EmbedCohere Rerank企业AI平台模型训练热门高级检索
Cohere专为企业提供尖端的大语言模型和检索增强生成技术,帮助企业高效解决实际问题并优化生成型AI、搜索与发现功能,从而推动全球企业在人工智能领域的持续竞争力。
AutoRAG - 自动优化检索增强生成流程的开源工具
AutoRAGGithubRAG优化开源项目数据处理自动化评估部署
AutoRAG是一个开源的检索增强生成(RAG)自动优化工具,专门为特定数据和用例寻找最佳RAG流程。该工具支持自动评估多种RAG模块组合,简化了最优方案的发现过程。AutoRAG提供简洁的代码接口和命令行操作,方便用户快速评估、部署和共享优化后的RAG流程。此外,AutoRAG还集成了多种评估指标、支持模块、可视化仪表板和Web界面,使RAG技术的应用更加便捷高效。
ragas - 高效评估与优化RAG管道性能的框架
GithubLLMRAGRagas开源项目性能监控评估框架
Ragas是一款工具集,用于评估、监控和优化RAG(检索增强生成)应用的性能,特别适合生产环境中的大语言模型(LLM)。Ragas集成了最新研究成果,能在CI/CD流程中进行持续检查,确保管道性能稳定。通过简单的安装和快速入门示例,用户可以快速体验Ragas的功能,并参与社区讨论LLM和生产相关问题。
super-rag - 提升AI应用性能的高效RAG流水线工具
GithubREST APISuper-Rag云端API人工智能开源项目文档处理
Super-Rag为AI应用提供了支持多种文档格式与向量数据库的高效RAG流水线。包含生产就绪REST API,支持自定义数据分割,多种编码模式,及代码解释器模式,适于解决计算性问题与答疑,并通过唯一ID高效进行会话管理。
ToolJet - 开源低代码平台,快捷部署并构建企业内部工具
GithubToolJet低代码平台内部工具开发开源框架开源项目数据集成
ToolJet是一款开源低代码平台,可极大缩减工程师构建和部署内部工具的工作量。通过拖放操作即可快速创建复杂的响应式前端界面。它支持多种数据源,包括PostgreSQL、MongoDB 和 Elasticsearch数据库,支持OpenAPI规范和OAuth2的API端点,以及可以整合Stripe、Slack等SaaS工具和S3、GCS等对象存储服务。
RAGFoundry - 开源框架增强大语言模型检索能力
GithubRAG Foundry大语言模型开源项目数据集创建检索增强生成模型微调
RAG Foundry是一个开源框架,通过RAG增强数据集微调模型来提升大语言模型的外部信息检索能力。该框架包含数据集创建、模型训练、推理和评估四个模块,支持快速原型设计和RAG实验。其模块化设计和可定制工作流程,有助于研究人员和开发者高效改进LLM的检索增强生成能力。
fastRAG - 检索增强生成模型的构建与应用探索
ColBERTGithubHaystackLLMONNX RuntimefastRAG开源项目
fastRAG是一个专为构建和优化检索增强生成模型的研究框架,集成了最先进的LLM和信息检索技术。它为研究人员和开发人员提供了一整套工具,支持在Intel硬件上进行优化,并兼容Haystack自定义组件。其主要特点包括对多模态和聊天演示的支持、优化的嵌入模型和索引修改功能,以及与Haystack v2+的兼容性。
R2R - 在生产环境中构建、扩展和管理面向用户的检索增强生成应用程序
GithubR2RRetrieval-Augmented Generation多模态支持开源项目混合搜索知识图谱
R2R旨在弥合本地LLM实验与可扩展的生产级检索增强生成(RAG)应用之间的差距。R2R提供最新的RAG技术,基于RESTful API构建,使用简便。其主要功能包括多模态支持、混合搜索、图形RAG、应用管理、可观察性、可配置性和扩展性。通过R2R仪表板用户界面,可直观管理和分析RAG引擎性能。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号