Project Icon

roberta-large-cola-krishna2020

机器生成英语句子的流畅性与语法性评估

该模型为基于CoLA语料库训练的RoBERTa-large分类器,用于评估机生成英语句子的语法接纳性和流畅性,常应用于文本风格的转换评估。模型由Krishna等人在2020年发表,并已从Fairseq格式转为Transformers格式,详情参见原作者的项目页。

roberta-base-CoLA - RoBERTa模型在CoLA任务上的微调和性能分析
GithubHuggingfaceTextAttack分类任务开源项目机器学习模型模型训练自然语言处理
本项目展示了roberta-base模型在GLUE数据集的CoLA任务上的微调过程。模型经过5轮训练,使用32批量大小、2e-05学习率和128最大序列长度。采用交叉熵损失函数,模型在首轮训练后即达到85%的评估集准确率。这一结果凸显了RoBERTa模型在语言可接受性判断任务中的出色表现。
mmlw-roberta-large - 增强自然语言处理适用性的多任务学习模型
GithubHuggingfacesentence-transformers句子相似度开源项目文本分类模型特征提取聚类
该开源项目mmlw-roberta-large通过多任务学习提高了自然语言处理性能,尤其在句子相似性、分类和检索等任务上表现突出。模型适用于多种数据集,如MTEB AllegroReviews和MTEB ArguAna-PL,实现了较高的准确率和F1值。使用了sentence-transformers和transformers技术,确保在大规模数据集上的优异表现。
roberta-large - 大型英语预训练模型,适合多种任务优化
GithubHuggingfaceRoBERTaTransformer模型开源项目模型语言模型遮蔽语言建模预训练模型
RoBERTa是一个自监督学习的变压器模型,通过掩码语言建模(MLM)目标优化英语语言的表示。主要用于细调下游任务,如序列和标记分类以及问答。此模型预训练于包括BookCorpus和Wikipedia在内的五个大型语料库,使用BPE分词法和动态掩码训练,实现双向句子表示,并在GLUE测试中表现优异,适合在PyTorch和TensorFlow中应用。
roberta-large-mnli - RoBERTa大型模型微调的零样本分类模型
GithubHuggingfaceRoBERTa开源项目文本分类机器学习模型自然语言处理语言模型
roberta-large-mnli是基于RoBERTa大型模型在MNLI语料库上微调的自然语言推理模型。该模型在零样本分类任务中表现优异,适用于句对分类和序列分类。它采用transformer架构,通过掩码语言建模进行预训练,在GLUE和XNLI基准测试中成绩卓越。然而,用户需注意模型可能存在偏见,不适合生成事实性内容或用于可能造成负面影响的场景。
stsb-roberta-large - RoBERTa大型模型用于评估句子语义相似度
Cross-EncoderGithubHuggingfaceSentenceTransformers开源项目文本对比模型自然语言处理语义相似度
stsb-roberta-large是一个基于SentenceTransformers框架的Cross-Encoder模型,专门用于评估句子对的语义相似度。该模型在STS基准数据集上训练,可为两个句子之间的语义相似性预测0到1之间的分数。它可以轻松集成到多种自然语言处理任务中,为文本相似度分析提供解决方案。
sentiment-roberta-large-english - RoBERTa微调的通用英文情感分析模型
GithubHuggingfaceRoBERTaSiEBERT开源项目情感分析机器学习模型自然语言处理
sentiment-roberta-large-english是一个基于RoBERTa-large的微调模型,用于英文文本的二元情感分析。该模型在15个不同来源的数据集上进行了训练和评估,提高了对各种文本类型的泛化能力。在新数据上,其表现优于仅在单一类型文本上训练的模型,平均准确率为93.2%。模型可通过Hugging Face pipeline快速部署,也可作为进一步微调的基础。
roberta-base - RoBERTa预训练语言模型用于多种自然语言处理任务
GithubHuggingfaceRoBERTa人工智能开源项目机器学习模型自然语言处理预训练模型
RoBERTa是基于Transformer架构的预训练语言模型,在大规模英文语料上使用掩码语言建模进行训练。它采用动态掩码和大批量训练等优化策略,在GLUE基准测试中表现出色。RoBERTa适用于序列分类、命名实体识别等任务的微调,能学习双向上下文表示,为NLP应用提供强大的特征提取能力。
roberta-large-nli-stsb-mean-tokens - 基于RoBERTa的大规模语义相似度计算和文本嵌入模型
GithubHuggingfacesentence-transformers向量化开源项目模型模型嵌入自然语言处理语义相似度
这是一个基于RoBERTa的sentence-transformers模型,可将文本映射至1024维向量空间。它支持句子相似度计算、文本聚类和语义搜索等任务,并提供简便的API接口。该模型可通过sentence-transformers或HuggingFace Transformers库使用,便于获取文本嵌入。然而,由于性能已过时,建议采用更新的预训练模型替代。
twitter-roberta-large-2022-154m - 训练于154M推文的RoBERTa-large模型(2022年数据)及其应用
GithubHuggingfaceRoBERTa-large开源项目推特掩码语言模型模型特征提取自然语言处理
本项目提供了一种经过2022年12月底前154M条推文训练的RoBERTa-large模型,主要用于推文数据的理解和解析。它通过Twitter Academic API获取并过滤推文,实现了高级文本预处理、掩码语言模型和特征提取的应用示例。用户可借助标准Transformers接口进行推文分析及嵌入提取,同时适用于对比在不同时间段训练的模型的预测结果和困惑度得分,为研究人员提供更深入分析推特时间序列数据的工具。
sentiment-roberta-large-english-3-classes - 基于RoBERTa的英文情感分析模型,精确分类社交媒体情感
GithubHuggingfaceRoBERTa准确率开源项目情感分析模型社交媒体
该模型使用RoBERTa进行三类情感分类(正面、中性、负面),特别适合社交媒体文本。通过5,304条社交媒体帖子进行微调,达到了86.1%的准确率。可通过transformers库轻松集成,提高文本分类的精准性和效率。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号