Project Icon

ms-marco-TinyBERT-L-2

针对MS Marco段落排序优化的TinyBERT-L-2跨编码器

ms-marco-TinyBERT-L-2是一个为MS Marco段落排序任务优化的跨编码器模型。在TREC Deep Learning 2019和MS Marco段落重排任务中,它的NDCG@10和MRR@10分别达到69.84和32.56。模型每秒可处理9000个文档,为信息检索提供高效准确的解决方案。研究人员可通过Transformers或SentenceTransformers库使用该模型进行查询-段落对的相关性评分。

bge-reranker-v2-minicpm-layerwise - 分层文本排序器支持多语言并可调节计算层数实现高效推理
BAAIFlagEmbeddingGithubHuggingface多语言处理开源项目文本分类模型模型训练
bge-reranker-v2-minicpm-layerwise是一个基于MiniCPM-2B-dpo-bf16的多语言文本排序器模型。它支持中英双语及多语言场景,可灵活选择8-40层进行计算,平衡推理速度和性能。模型在文本相关性评分和信息检索任务中表现优异,适用于大规模文本数据处理。通过FlagEmbedding框架可实现简便调用和部署,并支持FP16/BF16加速。
dragon-plus-query-encoder - DRAGON+ 基于BERT的先进密集检索模型
BERTDRAGON+GithubHuggingface密集检索开源项目模型特征提取自然语言处理
DRAGON+是一个基于BERT的先进密集检索模型,采用非对称双编码器结构。该模型从RetroMAE初始化,并在MS MARCO语料库的增强数据上进行训练。在MARCO Dev和BEIR基准测试中,DRAGON+展现出卓越性能,适用于文本检索和特征提取任务。研究人员和开发者可通过HuggingFace Transformers库轻松使用DRAGON+进行查询和上下文编码。
deberta-v3-xsmall - 轻量级高性能自然语言处理模型
DeBERTaGithubHuggingface开源项目微软机器学习模型自然语言处理预训练模型
DeBERTa-v3-xsmall是一个参数量仅为2200万的轻量级自然语言处理模型。该模型采用ELECTRA风格预训练和梯度解耦嵌入共享技术,在SQuAD 2.0和MNLI等任务上表现出色。它在保持高效性的同时,显著提升了下游任务性能,适用于资源受限的自然语言理解应用场景。
bert-small - 轻量级BERT模型用于下游NLP任务优化
BERTGithubHuggingface人工智能开源项目模型知识蒸馏自然语言处理预训练模型
bert-small是Google BERT官方仓库转换的小型预训练模型,属于紧凑型BERT变体系列。该模型采用4层结构和512维隐藏层,为自然语言处理研究提供轻量级解决方案。在自然语言推理等任务中,bert-small展现出优秀的泛化能力,有助于推进NLI研究beyond简单启发式方法。作为下游任务优化的理想选择,bert-small为NLP领域带来新的研究与应用可能。
bert_uncased_L-12_H-768_A-12 - BERT迷你模型优化低资源环境下的应用
BERTGithubHuggingface开源项目模型知识蒸馏紧凑模型计算资源预训练
BERT Miniatures提供24款小型BERT模型,适合计算资源有限的环境。利用知识蒸馏,这些模型可通过微调获得精确的结果,旨在支持低资源环境的研究并鼓励探索新的创新方向。用户可在官方BERT GitHub页面及HuggingFace平台下载这些模型。它们在GLUE基准测试中表现良好,可通过调整超参数实现最佳效果。详情请参考相关文献。
BERTopic - 高效的Transformers主题建模,支持多种模式
BERTopicGithubPythonc-TF-IDFtransformers主题建模开源项目
BERTopic是一种利用Transformers和c-TF-IDF进行主题建模的技术,能够生成易于解释的密集主题聚类,同时保留关键词描述。该项目支持多种主题建模方法,如有监督、半监督和无监督模式,具有模块化和高扩展性。丰富的可视化功能和多种表示方法进一步支持深入分析。BERTopic还兼容多种嵌入模型,并支持多语言处理,适应不同应用场景。
MS-MARCO-Web-Search - 大规模网络数据集推动搜索与机器学习研究进展
GithubMS MARCO Web Search信息检索开源项目搜索引擎数据集机器学习
MS-MARCO-Web-Search是一个基于ClueWeb22的大规模网络数据集,包含数百万真实查询点击标签。它提供丰富的文本、视觉和语义信息,设置了嵌入模型、嵌入检索和端到端检索三个挑战任务。该数据集旨在推动机器学习和信息检索系统研究,并验证方法在大规模数据上的有效性。
SpanMarkerNER - 命名实体识别的高效训练框架
BERTGithubHugging FaceNamed Entity RecognitionRoBERTaSpanMarker开源项目
SpanMarker是一个基于Transformer库的命名实体识别框架,支持BERT、RoBERTa和ELECTRA等编码器。框架提供模型加载、保存、超参数优化、日志记录、检查点、回调、混合精度训练和8位推理等功能。用户可以方便地使用预训练模型,并通过免费API进行快速原型开发和部署。
marqo - 向量搜索引擎 ,实现文本和图像内容的矢量化处理及检索
GithubMarqo向量搜索嵌入生成开源项目数据索引机器学习
Marqo 作为全面的端到端向量搜索引擎,不仅实现文本和图像内容的矢量化处理及检索,更支持最新机器学习模型。其简洁的API设计允许开发者轻松实行多样的语义搜索操作,且无需独立处理数据嵌入问题。Marqo 的云服务部署有效降低响应时间,同时提供可伸缩的计算资源、持续可靠的服务及全时技术支持。
classifier-multi-label - 基于BERT的多标签文本分类算法实现
BERTGithubSeq2SeqTextCNNtf.nn.softmax_cross_entropy_with_logits多标签分类开源项目
本项目介绍了如何使用BERT结合TextCNN、Denses、Seq2Seq等多种算法实现多标签文本分类。涵盖了模型结构、损失函数和解码方法等细节,展示了不同方法在推理速度和分类效果上的表现,提供了实验数据和结论,帮助开发者选择最佳解决方案。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号