Project Icon

nli-deberta-v3-xsmall

使用DeBERTa模型实现自然语言推理与零样本分类

该模型通过Cross-Encoder技术训练,基于microsoft/deberta-v3-xsmall,实现自然语言推理及零样本分类。其使用SNLI和MultiNLI数据进行训练,表现为:SNLI测试集91.64%的准确率,MNLI错配集87.77%的准确率。模型能识别句对的矛盾、蕴涵和中立标签,支持Python和Transformers库的调用,便于在多场景中应用。详细信息请参阅文档以提升项目中的自然语言处理效果。

bert_uncased_L-4_H-512_A-8 - BERT小型模型为资源受限环境提供高效自然语言处理解决方案
BERTGLUEGithubHuggingface开源项目模型模型压缩知识蒸馏自然语言处理
BERT小型模型是为计算资源受限环境设计的自然语言处理工具。它保留了标准BERT架构和训练目标,但模型规模更小,适用于多种应用场景。这种模型在知识蒸馏中表现出色,可利用更大、更精确的模型生成微调标签。其目标是促进资源有限机构的研究工作,并鼓励学术界探索模型创新的新方向,而非仅仅增加模型容量。
mdeberta-v3-base-kor-further - 基于韩语数据强化的多语言DeBERTa模型提升NLP任务性能
DeBERTaGithubHuggingface人工智能开源项目机器学习模型自然语言处理预训练模型
mDeBERTa-v3-base-kor-further是一个通过40GB韩语数据进行进一步预训练的多语言模型。该模型采用Disentangled Attention和Enhanced Mask Decoder技术,有效学习词位置信息。在NSMC、NER、PAWS等多个韩语自然语言理解任务中,性能优于基准模型。模型包含86M参数,支持多语言处理,为自然语言处理研究和应用提供了强大工具。
distilbert-multilingual-nli-stsb-quora-ranking - DistilBERT多语言句子嵌入模型实现高效语义搜索和相似度计算
GithubHuggingfacesentence-transformers向量嵌入多语言模型开源项目模型自然语言处理语义相似度
这是一个基于DistilBERT的多语言句子嵌入模型,能将文本映射到768维向量空间。模型经NLI、STS-B和Quora数据集训练,支持多语言处理,适用于语义搜索、相似度计算和文本聚类等任务。通过sentence-transformers或Hugging Face Transformers,开发者可轻松将其集成到各类自然语言处理应用中,实现高效的文本分析和处理。
T0_3B - 小规模T0模型超越GPT-3,进行零样本自然语言任务处理
GithubHuggingfaceT0偏见与公平性开源项目模型模型训练自然语言处理评估数据
T0*模型通过自然语言提示实现零样本任务泛化,性能超越GPT-3,且模型体积缩小至16分之一。该模型在多任务提示数据集中微调,能够针对未见任务做出高效预测。适用于多种推理场景,包括情感分析、句子重排列和词义判断等。其训练数据源自多个数据集并经过严谨评估,保障模型性能可靠性。虽然T0*模型参数较大,但通过优化和并行化方案能够有效应用于多GPU环境。
deberta-v3-large_boolq - DeBERTa-v3-large模型在真假问答任务中实现88.35%准确率
DeBERTaGithubHuggingface开源项目文本分类机器学习模型模型微调自然语言处理
本项目基于DeBERTa-v3-large模型,在boolq数据集上进行微调,专注于真假问答分类任务。模型在评估集上达到88.35%的准确率,可处理多样化的真假问题。支持批量处理问题-上下文对,输出每个问题的真假概率。为自然语言处理和问答系统研究提供了有力支持。
bge-m3-zeroshot-v2.0 - BGE-M3基于零样本学习的多语言文本分类模型
GithubHuggingfacezeroshot分类商业友好数据多语言模型开源项目文本分类模型自然语言推理
bge-m3-zeroshot-v2.0模型基于BAAI/bge-m3-retromae开发,是一款高效的零样本文本分类器。该模型支持多语言处理,可接受长达8192个tokens的输入。通过自然语言推理训练,无需微调即可执行各类分类任务。模型分为商业友好版(-c)和学术研究版,在28个分类任务中表现优异。适用于需要灵活文本分类解决方案的场景,支持GPU和CPU部署。
cross-en-de-roberta-sentence-transformer - RoBERTa跨语言句向量模型实现德英文本语义匹配
GithubHuggingfaceRoBERTaSentence Transformers句子嵌入开源项目模型语义相似度跨语言模型
cross-en-de-roberta-sentence-transformer是一个基于RoBERTa的跨语言句向量模型,专门针对德语和英语文本进行优化。该模型通过多语言微调和语言交叉训练,在语义相似度计算、语义搜索和释义挖掘等任务中表现优异。它不仅在德语和英语单语环境下表现出色,在跨语言场景中也展现了卓越性能,为双语自然语言处理应用提供了有力支持。
zero_nlp - 中文NLP训练与应用框架
Githubpytorchzero_nlp中文NLP大模型开源项目模型训练
zero_nlp是基于pytorch和transformers的中文NLP框架,支持从数据处理到模型部署的整个工作流程。它特别适用于处理大数据集、训练和部署多卡串联大模型,支持包括gpt2、clip在内的丰富模型类型,适用于文本分类、生成及多模态处理等多种任务。
roberta-base - RoBERTa预训练语言模型用于多种自然语言处理任务
GithubHuggingfaceRoBERTa人工智能开源项目机器学习模型自然语言处理预训练模型
RoBERTa是基于Transformer架构的预训练语言模型,在大规模英文语料上使用掩码语言建模进行训练。它采用动态掩码和大批量训练等优化策略,在GLUE基准测试中表现出色。RoBERTa适用于序列分类、命名实体识别等任务的微调,能学习双向上下文表示,为NLP应用提供强大的特征提取能力。
Text-Moderation - 基于Deberta-v3的多分类文本审核系统
AutotrainDeBERTaGithubHuggingface内容分类开源项目文本审核模型自然语言处理
Text-Moderation采用Deberta-v3架构开发的文本分类模型,通过九类标签对文本内容进行审核分类。模型可识别包括性内容、仇恨言论、暴力描述、骚扰行为和自残倾向等敏感信息,并为每个类别提供概率评分。该模型实现了75%的分类准确率,主要支持英语文本的审核工作,可应用于内容审核和文本管理场景。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号