Project Icon

nli-roberta-base

用于自然语言推理与零样本分类的跨编码器

此模型使用SentenceTransformers中的Cross-Encoder类开发,专用于自然语言推理(NLI),通过SNLI和MultiNLI数据集训练,可输出矛盾、蕴含及中立标签分数。预训练模型兼容零样本分类,便于通过SentenceTransformers或Transformers库应用于多种文本推理与分类场景。

xlm-roberta-longformer-base-4096 - 支持超长序列处理的多语言Transformer模型
GithubHuggingfaceWikiText-103XLM-R Longformer低资源语言开源项目模型长序列处理问答任务
该项目结合XLM-R与Longformer模型,提升了对多达4096个标记的处理能力,以提高低资源语言的处理效果。模型在WikiText-103语料库上进行预训练,适用于多语言问答任务。推荐使用NVIDIA Apex和大容量GPU以确保模型性能和效率。项目由Peltarion完成,提供相关代码和训练脚本供开发者参考。
roberta-large - 大型英语预训练模型,适合多种任务优化
GithubHuggingfaceRoBERTaTransformer模型开源项目模型语言模型遮蔽语言建模预训练模型
RoBERTa是一个自监督学习的变压器模型,通过掩码语言建模(MLM)目标优化英语语言的表示。主要用于细调下游任务,如序列和标记分类以及问答。此模型预训练于包括BookCorpus和Wikipedia在内的五个大型语料库,使用BPE分词法和动态掩码训练,实现双向句子表示,并在GLUE测试中表现优异,适合在PyTorch和TensorFlow中应用。
xlm-roberta-large - 大规模多语言预训练模型
GithubHuggingfaceXLM-RoBERTa多语言模型开源项目机器学习模型自然语言处理预训练模型
XLM-RoBERTa是一个在2.5TB多语言数据上预训练的大型语言模型,覆盖100种语言。该模型采用掩码语言建模技术,能够生成双向文本表示。XLM-RoBERTa主要应用于序列分类、标记分类和问答等下游任务的微调。凭借其在多语言和跨语言任务中的出色表现,XLM-RoBERTa为自然语言处理领域提供了坚实的基础。
chinese_roberta_L-2_H-128 - 使用多模态预训练优化中文自然语言处理
CLUECorpusSmallGithubHuggingfaceRoBERTa开源项目模型语言模型预训练
该项目包括24种中文RoBERTa模型,使用CLUECorpusSmall数据集进行训练,效果超过较大数据集。模型通过UER-py和TencentPretrain预训练,并支持多模态框架,参数超过十亿。模型可在HuggingFace和UER-py Modelzoo中获取。项目提供详细的训练过程和关键细节,便于结果复现,着重提升中文自然语言处理任务中的性能。
xlm-roberta-large-finetuned-conll03-english - XLM-RoBERTa基于命名实体识别模型支持百余种语言
GithubHuggingfaceXLM-RoBERTa命名实体识别多语言模型开源项目模型自然语言处理迁移学习
xlm-roberta-large-finetuned-conll03-english是基于XLM-RoBERTa的多语言命名实体识别模型,预训练涵盖百余种语言,并经英语CoNLL-2003数据集微调。适用于命名实体识别、词性标注等标记分类任务,具备出色的多语言处理能力。模型由Facebook AI团队开发,在Hugging Face平台开放使用。使用时需注意潜在偏见和局限性。
xlm-roberta-base-language-detection - 多语言文本自动识别模型
GithubHuggingfaceXLM-RoBERTa多语言模型开源项目机器学习模型自然语言处理语言识别
这是一个基于XLM-RoBERTa模型微调的多语言文本分类工具,可识别20种语言,测试集准确率达99.6%。模型通过简单的pipeline API快速部署,适用于多语言环境下的自动语言检测。与基准模型相比,该工具在准确性和易用性方面均有提升,为自然语言处理应用提供了可靠的语言识别功能。
bigbird-roberta-base - 高性能长序列文本处理的稀疏注意力Transformer模型
BigBirdGithubHuggingfacetransformer模型开源项目模型深度学习自然语言处理长序列处理
BigBird-RoBERTa-base是一种基于块稀疏注意力机制的Transformer模型,可处理长达4096个token的序列。该模型在Books、CC-News、Stories和Wikipedia等大规模数据集上预训练,大幅降低了计算成本。在长文档摘要和长上下文问答等任务中,BigBird-RoBERTa-base展现出优秀性能。模型支持灵活配置注意力类型,可在默认的块稀疏模式和全注意力模式间切换,为超长序列文本处理提供了高效方案。
tner-xlm-roberta-base-ontonotes5 - XLM-RoBERTa多语言命名实体识别模型实现高精度实体标注
GithubHuggingfaceXLM-RoBERTa命名实体识别开源项目标记分类模型深度学习自然语言处理
该命名实体识别模型基于XLM-RoBERTa预训练模型微调,专用于令牌分类任务。模型支持识别组织、人名、地点等多种实体类型,采用12层注意力头结构,词汇表包含250002个词。项目提供完整训练数据集和评估指标,并通过tner库实现简单集成。其开源特性和易用API使其成为构建高性能多语言NER应用的理想选择。
e5-base - 多语言句子嵌入模型用于文本理解和检索任务
GithubHuggingfaceMTEBSentence Transformerse5-base开源项目文本分类模型语义相似度
e5-base是一个句子嵌入模型,用于多语言文本理解和检索任务。该模型在MTEB基准测试中表现优秀,涵盖分类、检索、聚类和语义相似度等任务。e5-base支持多种语言,适用于问答系统、文档检索和语义搜索等应用场景。这个模型为自然语言处理应用提供了有效的工具。
roberta-base-CoLA - RoBERTa模型在CoLA任务上的微调和性能分析
GithubHuggingfaceTextAttack分类任务开源项目机器学习模型模型训练自然语言处理
本项目展示了roberta-base模型在GLUE数据集的CoLA任务上的微调过程。模型经过5轮训练,使用32批量大小、2e-05学习率和128最大序列长度。采用交叉熵损失函数,模型在首轮训练后即达到85%的评估集准确率。这一结果凸显了RoBERTa模型在语言可接受性判断任务中的出色表现。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号