Project Icon

cucumber-js

Node.js行为驱动测试框架 提升团队协作效率

Cucumber-js是一款面向Node.js的自动化测试框架,支持开发者使用简单明了的语言编写测试用例。这个框架遵循行为驱动开发(BDD)原则,有利于增进团队成员之间的沟通与协作。Cucumber-js不仅安装便捷,还提供调试、并行执行和失败重试等实用功能。它可应用于多种类型的Node.js项目,助力开发团队建立稳定、易维护的测试体系。


Cucumber

Automated tests in plain language, for Node.js

#StandWithUkraine npm build coverage backers sponsors

Cucumber is a tool for running automated tests written in plain language. Because they're written in plain language, they can be read by anyone on your team. Because they can be read by anyone, you can use them to help improve communication, collaboration and trust on your team.

This is the JavaScript implementation of Cucumber. It runs on maintained versions of Node.js. You can quickly try it via CodeSandbox, or read on to get started locally in a couple of minutes.

Looking to contribute? Read our code of conduct first, then check the contributing guide to get up and running.

Install

Cucumber is available on npm:

npm install @cucumber/cucumber

Get Started

Let's take this example of something to test:

First, write your main code in src/index.js:

class Greeter {
  sayHello() {
    return 'hello'
  }
}

module.exports = {
  Greeter
}

Then, write your feature in features/greeting.feature:

Feature: Greeting

  Scenario: Say hello
    When the greeter says hello
    Then I should have heard "hello"

Next, implement your steps in features/support/steps.js:

const assert = require('assert')
const { When, Then } = require('@cucumber/cucumber')
const { Greeter } = require('../../src')

When('the greeter says hello', function () {
  this.whatIHeard = new Greeter().sayHello()
});

Then('I should have heard {string}', function (expectedResponse) {
  assert.equal(this.whatIHeard, expectedResponse)
});

Finally, run Cucumber:

npx cucumber-js

And see the output:

Terminal output showing a successful test run with 1 scenario and 2 steps, all passing

If you learn best by example, we have a repo with several example projects, that might help you get going.

Documentation

The following documentation is for main, which might contain some unreleased features. See documentation for older versions if you need it.

Support

Support is available from the community if you need it.

项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

Project Cover

天工AI音乐

天工AI音乐平台支持音乐创作,特别是在国风音乐领域。该平台适合新手DJ和音乐爱好者使用,帮助他们启动音乐创作,增添生活乐趣,同时发现和分享新音乐。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号