Project Icon

YOLOv8-TensorRT-CPP

用C++和TensorRT实现高效的YOLOv8模型推理

本文介绍了如何使用TensorRT的C++ API实现YOLOv8模型的推理,支持目标检测、语义分割和身体姿态估计,包括系统要求、安装步骤、模型转换和项目构建方法。内容中强调了在GPU上运行推理的注意事项和性能基准测试,提供了从PyTorch到ONNX模型转换的详细步骤,是开发计算机视觉应用的参考资料。

yoloair - YOLOAir2024版:综合模型改进教程与源码库
GithubPyTorchUltralyticsProYOLOAirYOLOv5YOLOv8开源项目
YOLOAir2024版发布,提供多模型支持及改进教程,包括YOLOv5、YOLOv7、YOLOv8等。通过统一框架和模块化实现模型多样化应用,如目标检测、实例分割、图像分类等,适用于科研与实际应用。免费提供源代码。
LeYOLO - 可扩展高效的目标检测CNN架构
COCO数据集GithubLeYOLO开源项目目标检测神经网络计算效率
LeYOLO是一种新型目标检测模型系列,通过创新的CNN架构设计实现了计算效率与准确性的优化平衡。该模型引入高效主干网络缩放、快速金字塔架构网络和解耦网络中的网络检测头,大幅降低计算负载。在COCO验证集上,LeYOLO-Small仅使用4.5 GFLOP就达到38.2%的mAP,比YOLOv9-Tiny减少42%计算量。LeYOLO系列具有强大可扩展性,适用于从超低计算需求(<1 GFLOP)到高效高性能(>4 GFLOPs)的多种场景。
yolov10m - 高效的实时目标检测系统
COCO数据集GithubHuggingfacePyTorchYOLOv10开源项目模型目标检测计算机视觉
YOLOv10m是一个开源的目标检测项目,利用PyTorch模型和COCO数据集实现高效的计算机视觉解决方案。用户可以方便地进行训练、验证,并将模型上传至库,非常适合多种技术水平的使用者进行实时目标检测应用。
awesome-yolo-object-detection - YOLO目标检测开源项目与资源汇编
GithubYOLO实时检测开源项目机器学习目标检测视觉AI
提供YOLO目标检测的全面资源汇编。包含官方以及多个针对特殊任务或硬件的优化版本,涵盖YOLOv1至YOLOv7等系列。项目中还包括丰富的学习资源、应用示例及工具,为学者和开发者提供了解及使用YOLO技术的优质资料。
yolor - 改进的多任务统一网络实时对象检测模型
GithubYOLORYOLOv4多任务学习对象检测开源项目深度学习
该项目实现了一个新型多任务统一网络,基于最新论文支持多任务并在COCO数据集中的实时对象检测上表现出色。优化后的YOLOR模型在测试和验证中均显示出较高的AP值和运行速度,适用于多种实时应用场景。项目提供了详细的安装、训练和测试指南,支持Docker和Colab环境,适合研究人员和开发者在复杂场景中进行高效的对象检测。
yolov8-streamlit-detection-tracking - YOLOv8和Streamlit打造的实时目标检测追踪应用
GithubStreamlitYOLOv8实时目标检测对象追踪开源项目计算机视觉
该项目基于YOLOv8和Streamlit开发,提供实时目标检测和追踪功能的Web应用。支持RTSP、UDP、YouTube等多种视频源,以及静态视频和图像处理。用户可通过直观界面调整模型参数,查看可视化结果并下载。项目展示了计算机视觉与Web应用的集成,适合学习和演示目的。
3D-BoundingBox - 使用深度学习与几何方法,实现高效的3D边界框估计
3D Bounding BoxGithubKittiPyTorchYOLOv3开源项目深度学习
项目提供基于PyTorch的深度学习解决方案,通过结合YOLOv3和2D-3D几何转换,实现高效3D边界框估计。主要功能包括下载预训练权重、通过视频和图像数据进行模型推理和训练,依赖PyTorch和其他深度学习库。项目未来计划是在Kitti数据集上训练自定义YOLO网络和姿态可视化。目前版本每帧处理时间约为0.4秒,并计划进一步提升速度。文档中详细介绍了模型训练步骤及实际应用操作。
rtdetr_r50vd - 全新RT-DETR模型提升精度与速度的实时物体检测方案
GithubHuggingfaceRT-DETRYOLO变压器实时应用开源项目模型目标检测
RT-DETR是面向实时物体检测的创新模型,通过混合编码器和最小化不确定性查询选择,实现高精度和快速检测。模型在COCO和Objects365数据集训练,支持速度调整以适应多种场景。RT-DETR-R50/R101在COCO上分别取得53.1%和54.3%的平均精度,在T4 GPU上达到108和74 FPS,性能超过YOLO模型。
yolort - 简易高效的YOLOv5目标检测工具
GithubONNXTensorRTYOLOv5yolort对象检测开源项目
yolort项目致力于简化和优化YOLOv5的训练与推理。采用动态形状机制,结合预处理和后处理,支持LibTorch、ONNX Runtime、TVM、TensorRT等多种后端的轻松部署。项目遵循简洁设计理念,安装与使用便捷,支持通过PyPI和源码安装。提供丰富的推理接口示例和详细文档,使目标检测更为轻松,适用于广泛的应用场景。
a-PyTorch-Tutorial-to-Object-Detection - PyTorch物体检测模型教程与实现
GithubPyTorch单发多框检测卷积神经网络多尺度特征图对象检测开源项目
本教程详细指导如何使用PyTorch实现物体检测模型,包括模型构建、训练、评估和推理等环节。采用高效的单次多框检测(SSD)算法,介绍多尺度特征图、先验框和非极大值抑制等关键概念。适合具备PyTorch和卷积神经网络基础的学习者,教程提供中文翻译版便于理解和应用。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号