Project Icon

data-centric-AI

数据工程革新人工智能的新兴领域

Data-centric AI是一个新兴领域,注重通过改善数据质量和数量来提升AI系统性能。这个项目整理了Data-centric AI的全面资源,包含论文、代码和教程等。内容涵盖训练数据开发、推理数据开发和数据维护三大方面,为研究人员和开发者提供了深入了解和应用Data-centric AI概念与技术的宝贵参考。

Awesome-Data-Centric-AI

Awesome

A curated, but incomplete, list of data-centric AI resources. It should be noted that it is unfeasible to encompass every paper. Thus, we prefer to selectively choose papers that present a range of distinct ideas. We welcome contributions to further enrich and refine this list.

:loudspeaker: News: Please check out our open-sourced Large Time Series Model (LTSM)!

If you want to contribute to this list, please feel free to send a pull request. Also, you can contact daochen.zha@rice.edu.

Want to discuss with others who are also interested in data-centric AI? There are three options:

  • Join our Slack channel
  • Join our QQ group (183116457). Password: datacentric
  • Join the WeChat group below (if the QR code is expired, please add WeChat ID: zdcwhu and add a note indicating that you want to join the Data-centric AI group)!
group

What is Data-centric AI?

Data-centric AI is an emerging field that focuses on engineering data to improve AI systems with enhanced data quality and quantity.

Data-centric AI vs. Model-centric AI

data-centric

In the conventional model-centric AI lifecycle, researchers and developers primarily focus on identifying more effective models to improve AI performance while keeping the data largely unchanged. However, this model-centric paradigm overlooks the potential quality issues and undesirable flaws of data, such as missing values, incorrect labels, and anomalies. Complementing the existing efforts in model advancement, data-centric AI emphasizes the systematic engineering of data to build AI systems, shifting our focus from model to data.

It is important to note that "data-centric" differs fundamentally from "data-driven", as the latter only emphasizes the use of data to guide AI development, which typically still centers on developing models rather than engineering data.

Why Data-centric AI?

motivation

Two motivating examples of GPT models highlight the central role of data in AI.

  • On the left, large and high-quality training data are the driving force of recent successes of GPT models, while model architectures remain similar, except for more model weights.
  • On the right, when the model becomes sufficiently powerful, we only need to engineer prompts (inference data) to accomplish our objectives, with the model being fixed.

Another example is Segment Anything, a foundation model for computer vision. The core of training Segment Anything lies in the large amount of annotated data, containing more than 1 billion masks, which is 400 times larger than existing segmentation datasets.

What is the Data-centric AI Framework?

framework

Data-centric AI framework consists of three goals: training data development, inference data development, and data maintenance, where each goal is associated with several sub-goals.

  • The goal of training data development is to collect and produce rich and high-quality training data to support the training of machine learning models.
  • The objective of inference data development is to create novel evaluation sets that can provide more granular insights into the model or trigger a specific capability of the model with engineered data inputs.
  • The purpose of data maintenance is to ensure the quality and reliability of data in a dynamic environment.

Cite this Work

Zha, Daochen, et al. "Data-centric Artificial Intelligence: A Survey." arXiv preprint arXiv:2303.10158, 2023.

@article{zha2023data-centric-survey,
  title={Data-centric Artificial Intelligence: A Survey},
  author={Zha, Daochen and Bhat, Zaid Pervaiz and Lai, Kwei-Herng and Yang, Fan and Jiang, Zhimeng and Zhong, Shaochen and Hu, Xia},
  journal={arXiv preprint arXiv:2303.10158},
  year={2023}
}

Zha, Daochen, et al. "Data-centric AI: Perspectives and Challenges." SDM, 2023.

@inproceedings{zha2023data-centric-perspectives,
  title={Data-centric AI: Perspectives and Challenges},
  author={Zha, Daochen and Bhat, Zaid Pervaiz and Lai, Kwei-Herng and Yang, Fan and Hu, Xia},
  booktitle={SDM},
  year={2023}
}

Table of Contents

Training Data Development

training-data-development

Data Collection

  • Revisiting time series outlier detection: Definitions and benchmarks, NeurIPS 2021 [Paper] [Code]
  • Dataset discovery in data lakes, ICDE 2020 [Paper]
  • Aurum: A data discovery system, ICDE 2018 [Paper] [Code]
  • Table union search on open data, VLDB 2018 [Paper]
  • Data Integration: The Current Status and the Way Forward, IEEE Computer Society Technical Committee on Data Engineering 2018 [Paper]
  • To join or not to join? thinking twice about joins before feature selection, SIGMOD 2016 [Paper]
  • Data curation at scale: the data tamer system, CIDR 2013 [Paper]
  • Data integration: A theoretical perspective, PODS 2002 [Paper]

Data Labeling

  • Segment Anything [Paper] [code]
  • Active Ensemble Learning for Knowledge Graph Error Detection, WSDM 2023 [Paper]
  • Active-Learning-as-a-Service: An Efficient MLOps System for Data-Centric AI, NeurIPS 2022 Workshop on Human in the Loop Learning [paper] [code]
  • Training language models to follow instructions with human feedback, NeurIPS 2022 [Paper]
  • Interactive Weak Supervision: Learning Useful Heuristics for Data Labeling, ICLR 2021 [Paper] [Code]
  • A survey of deep active learning, ACM Computing Surveys 2021 [Paper]
  • Adaptive rule discovery for labeling text data, SIGMOD 2021 [Paper]
  • Cut out the annotator, keep the cutout: better segmentation with weak supervision, ICLR 2021 [Paper]
  • Meta-AAD: Active anomaly detection with deep reinforcement learning, ICDM 2020 [Paper] [Code]
  • Snorkel: Rapid training data creation with weak supervision, VLDB 2020 [Paper] [Code]
  • Graph-based semi-supervised learning: A review, Neurocomputing 2020 [Paper]
  • Annotator rationales for labeling tasks in crowdsourcing, JAIR 2020 [Paper]
  • Rethinking pre-training and self-training, NeurIPS 2020 [Paper]
  • Multi-label dataless text classification with topic modeling, KIS 2019 [Paper]
  • Data programming: Creating large training sets, quickly, NeurIPS 2016 [Paper]
  • Semi-supervised consensus labeling for crowdsourcing, SIGIR 2011 [Paper]
  • Vox Populi: Collecting High-Quality Labels from a Crowd, COLT 2009 [Paper]
  • Democratic co-learning, ICTAI 2004 [Paper]
  • Active learning with statistical models, JAIR 1996 [Paper]

Data Preparation

  • DataFix: Adversarial Learning for Feature Shift Detection and Correction, NeurIPS 2023 [Paper] [Code]
  • OpenGSL: A Comprehensive Benchmark for Graph Structure Learning, arXiv 2023 [Paper] [Code]
  • TSFEL: Time series feature extraction library, SoftwareX 2020 [Paper] [Code]
  • Alphaclean: Automatic generation of data cleaning pipelines, arXiv 2019 [Paper] [Code]
  • Introduction to Scikit-learn, Book 2019 [Paper] [Code]
  • Feature extraction: a survey of the types, techniques, applications, ICSC 2019 [Paper]
  • Feature engineering for predictive modeling using reinforcement learning, AAAI 2018 [Paper]
  • Time series classification from scratch with deep neural networks: A strong baseline, IIJCNN 2017 [Paper]
  • Missing data imputation: focusing on single imputation, ATM 2016 [Paper]
  • Estimating the number and sizes of fuzzy-duplicate clusters, CIKM 2014 [Paper]
  • Data normalization and standardization: a technical report, MLTR 2014 [Paper]
  • CrowdER: crowdsourcing entity resolution, VLDB 2012 [Paper]
  • Imputation of Missing Data Using Machine Learning Techniques, KDD 1996
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

白日梦AI

白日梦AI提供专注于AI视频生成的多样化功能,包括文生视频、动态画面和形象生成等,帮助用户快速上手,创造专业级内容。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

讯飞绘镜

讯飞绘镜是一个支持从创意到完整视频创作的智能平台,用户可以快速生成视频素材并创作独特的音乐视频和故事。平台提供多样化的主题和精选作品,帮助用户探索创意灵感。

Project Cover

讯飞文书

讯飞文书依托讯飞星火大模型,为文书写作者提供从素材筹备到稿件撰写及审稿的全程支持。通过录音智记和以稿写稿等功能,满足事务性工作的高频需求,帮助撰稿人节省精力,提高效率,优化工作与生活。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号