Project Icon

LLaMA-1B-dj-refine-150B

LLaMA架构的开源语言模型基于精炼数据集训练

LLaMA-1B-dj-refine-150B是一个采用LLaMA-1.3B架构的开源语言模型,基于Data-Juicer精炼的150B tokens RedPajama和Pile数据预训练。模型在16个HELM任务上的平均得分达34.21,优于同级别的Falcon-1.3B、Pythia-1.4B和Open-LLaMA-1.3B。项目提供了详细的训练数据集信息和性能对比,可作为语言模型研究的参考资源。

MicroLlama - 预算内的大规模语言模型构建:300M Llama模型的探索
GithubHuggingfaceMicroLlamahuggingface开源开源项目文本生成模型语言模型
该项目在有限预算内,通过全面开源的方法构建了一个300M Llama语言模型。尽管性能不及更大型的模型,但以不到500美元的投入,在多数据集上表现出色,并在与类似参数的BERT模型比较时展现优势。项目使用Vast.ai的计算资源和AWS S3存储,对TinyLlama模型进行了调整,重点优化Slimpajama数据集。这一项目展示了低成本大规模模型开发的潜力,并为细化应用如轻量级聊天机器人提供了坚实基础。
Llama-3.1-Swallow-8B-Instruct-v0.1 - 基于Llama 3.1的日英双语大语言模型
GithubHuggingfaceLlama 3.1 Swallow大语言模型开源项目指令微调日语能力模型评估基准
Llama-3.1-Swallow-8B-Instruct是一个基于Meta Llama 3.1持续预训练的日英双语大语言模型。模型使用2000亿个来自日语网络语料库、维基百科、数学和编程领域的token进行训练,并通过日语合成数据进行指令微调。在日语能力显著提升的同时保持了原有的英语水平,各项基准测试表现优异。该模型适合需要高质量日英双语理解和生成的应用场景。
AMD-Llama-135m - 轻量级语言模型实现高效推理加速
AMD-Llama-135mGithubHuggingface开源项目机器学习模型神经网络语言模型预训练
AMD-Llama-135m是一个基于LLama2架构的135M参数语言模型,在AMD Instinct MI250加速器上训练。该模型与huggingface transformers兼容,并使用LLama2相同的分词器。模型可独立使用,也可作为LLama2和CodeLlama的推理加速辅助模型。经SlimPajama和Project Gutenberg数据集预训练,以及StarCoder Python代码数据集微调后,模型在多项NLP基准测试中表现优异。通过推理加速技术,吞吐量可提升至3.88倍。
llama-3-2-1b-sft - 超大规模对话数据集的精细调优AI模型
GithubHuggingfacellama-3-2-1b-sft开源项目微调模型训练数据集超参数超大规模语言模型
该项目将NousResearch的Llama-3.2-1B模型进行精细调优,使用HuggingFaceH4/ultrachat_200k数据集以提高对话处理性能。在多GPU分布式训练中,使用Adam优化器和余弦学习率调度策略,该模型在验证集上的损失率降低至1.2759。适用于广泛的自然语言处理应用,特别是在对话生成和交互式AI领域中。
Llama-3.1-405B-Instruct-FP8 - Meta开发的多语言大规模语言模型,支持对话和文本生成
GithubHuggingfaceLlama 3.1人工智能元模型多语言大语言模型开源项目模型
Llama-3.1-405B-Instruct-FP8是Meta公司开发的多语言大规模语言模型。该模型支持8种语言的文本输入输出,具有128K的上下文长度,采用优化的Transformer架构。模型在多语言对话和文本生成任务中表现优异,适用于助手式聊天和自然语言处理等领域。Meta为该模型提供了商业许可证,允许在遵守使用政策的前提下应用于商业和研究用途。
Llama-3.2-3B-Instruct-uncensored-LoRA_final-Q4_K_M-GGUF - 高效微调的3B参数英文指令型大语言模型
AI开发GithubHuggingfaceLlamaUnsloth开源项目模型模型训练深度学习
Llama-3.2-3B-Instruct-uncensored-LoRA_final-Q4_K_M-GGUF是基于Llama-3.2-3B-Instruct-uncensored模型微调的开源大语言模型。该模型使用Unsloth和Huggingface的TRL库训练,提高了2倍的训练速度。由PurpleAILAB开发,采用Apache 2.0许可证,主要用于英语文本生成任务。这是一个参数量为3B的指令型模型,适合需要快速部署的应用场景。
Llama-3.2-3B - Meta推出Llama 3.2多语言大型语言模型系列
GithubHuggingfaceLlama 3.2Meta人工智能多语言大语言模型开源项目模型
Llama-3.2-3B是Meta开发的多语言大型语言模型,支持8种语言,包括英语和德语。模型采用优化的Transformer架构,通过监督微调和人类反馈强化学习训练而成。它可用于对话、知识检索和摘要等任务,具有128K的上下文长度,并使用分组查询注意力机制提高推理效率。Llama-3.2-3B适用于商业和研究用途,可进一步微调以适应各种自然语言生成任务。模型遵循Llama 3.2社区许可协议。
suzume-llama-3-8B-multilingual - Llama 3模型的多语言微调版本 提升跨语言对话性能
GithubHuggingfaceLlama 3人工智能多语言模型开源项目机器学习模型语言训练
Suzume-llama-3-8B-multilingual是基于Llama 3的多语言微调模型,经过近9万条多语言对话训练。该模型保持了Llama 3的英语能力,同时显著提升了多语言对话表现,涵盖德语、法语、日语、俄语和中文等语言。在MT-Bench多语言评测中,其成绩与顶级7B模型相当,展现了强大的跨语言对话能力。
Chinese-LLaMA-Alpaca-3 - 中文Llama-3大模型及其精调版本的特性
GithubLlama-3-Chinese中文大模型开源开源项目性能提升指令精调
Chinese-LLaMA-Alpaca-3项目推出了基于Meta新一代Llama-3技术的中文模型版本,涵盖原始及指令精调版本。这些模型利用海量中文数据增强了语义理解与指令执行性能,可广泛适用于多种中文文本处理任务。
LLaMA-2-7B-32K - 基于Llama-2开发的32K长文本理解模型
AI训练GithubHuggingfaceLLaMA-2开源项目模型深度学习语言模型长上下文
LLaMA-2-7B-32K是一个基于Llama-2开发的长文本语言模型,通过位置插值技术实现32K上下文长度。该模型采用预训练和指令微调策略,适用于多文档问答和长文本摘要等场景,支持API调用和本地部署。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号