Project Icon

competition-baseline

为数据科学入门者及爱好者提供基本的、易于理解的代码,支持参与国内外数据竞赛

competition-baseline为数据科学入门者及爱好者提供基本的、易于理解的代码,支持参与国内外数据竞赛。涵盖机器学习至深度学习等领域,适用于多种场景,如AI换脸、海上风电及人脸识别等,促进开源学习文化发展及技术应用能力提升。

t81_558_deep_learning - 深度神经网络的应用
Deep LearningGithubJeff HeatonKerasTensorFlowWashington University开源项目
本课程结合先进训练技术和神经网络架构,使学生能够处理表格数据、图像、文本和音频。内容涵盖经典神经网络、卷积神经网络(CNN)、长短期记忆网络(LSTM)、门控循环单元(GRU)、生成对抗网络(GAN)和强化学习,应用于计算机视觉、时间序列、安全性、自然语言处理(NLP)和数据生成等领域。通过使用Python实现TensorFlow和Keras,课程特别侧重深度学习的实际应用。无需预先了解Python,但需具备基本编程知识。
machine-learning - 机器学习入门,掌握Python与数据分析
GithubMachine LearningPython开源项目数据分析深度学习统计
这个开源项目旨在帮助自学者系统地学习机器学习。内容涵盖Python基础、数据分析、数据可视化、数学和统计,以及机器学习和深度学习的多个在线课程和教程。通过推荐的YouTube视频、Coursera课程和开源项目,提供从基础到高级的学习资源,帮助学习者提升编程与数据分析能力,并逐步进入机器学习和深度学习的领域。
Complete-Life-Cycle-of-a-Data-Science-Project - 数据科学项目全生命周期实践指南
APIGithubweb爬虫开源项目数据收集数据科学数据集
该项目提供了数据科学项目完整生命周期的实践指南。涵盖数据收集、清洗、特征工程、模型训练及部署全过程。详细介绍网络爬虫、API、数据库等数据获取方法,并汇总多个开放数据集资源。同时包含数据预处理、特征选择、模型评估等关键环节的最佳实践。对数据科学学习者和从业人员具有重要参考价值,有助于全面把握数据科学项目流程。
Competitions-and-Programs-List - 高质量竞赛项目列表 助力学生技能提升与职业发展
Github学生竞赛开源项目技术社区编程竞赛黑客马拉松
该资源库汇集了面向大学生的优质竞赛和项目,涵盖编程挑战、AI竞赛及人才培养计划等多个领域。学生参与这些活动可获得实践经验,提升技能,增强职场竞争力。内容来自Google、Amazon、Adobe等知名科技公司,为学生提供全面的学习和职业发展机会。
Leaderboard - 多语言语音识别基准测试平台 促进ASR系统评估
Github基准测试开源项目数据集模型评估语音识别
SpeechColab ASR leaderboard是一个开源的语音识别基准平台,集成测试集、模型集和标准化评估流程。平台提供多样化测试数据,涵盖广泛ASR场景,支持商业API和开源模型评估。它简化了ASR系统的基准测试、复现和验证过程,方便研究人员和开发者比较不同系统性能。通过统一的评估标准,该平台有助于推动语音识别技术的持续进步。
guacamol_baselines - 化学生成任务评估基准模型集合
GithubGuacaMolSMILES基准模型开源项目机器学习生成化学
GuacaMol Baselines项目为化学生成任务评估提供多种基准模型实现。包含随机采样、ChEMBL最佳选择、SMILES和图遗传算法、图蒙特卡洛树搜索以及SMILES LSTM变体等方法。项目配备预训练模型、数据集脚本和Docker容器,便于研究人员部署和比较各类生成模型。
data-science - 数据科学初学者实践教程集合
GithubJavaScriptPython开源项目数据分析数据可视化数据科学
Data Science for Beginners项目提供了一系列Jupyter Notebooks和网页开发代码,涵盖数据科学完整工作流程。项目使用Python、HTML5和JavaScript(特别是D3.js),展示了scikit-learn和PyCaret等工具的应用。内容包括数据收集、预处理、分析、文本分析和可视化,适合数据科学初学者学习实践。项目还包含数据叙事部分,指导如何改进数据可视化,以及提供了作者Medium博客和Observable个人资料的链接,供进一步学习。
intro-to-deep-learning - 全面实用的深度学习入门课程
GithubJupyter NotebookPython开源项目机器学习深度学习神经网络
这是一个面向深度学习初学者的开源项目,提供全面的入门课程。课程内容包括神经网络基础知识的介绍材料、实践演练和扩展资源。采用Jupyter Notebook形式,鼓励学生动手实践以加深理解。课程涵盖深度学习核心概念,为学习者打下扎实基础,为进一步探索高级主题如GAN和NLP做好准备。项目注重理论与实践结合,并提供深入学习资源。项目内容结构清晰,按主题分类组织,每个主题包含概述、预习建议、实践演示和深入学习资源。课程支持本地运行和Google Colab使用两种方式,增加了学习的灵活性。
cv_note - 分享计算机视觉和模型压缩部署技术栈笔记
CVGithub开源项目机器学习深度学习算法工程师计算机视觉
这个开源项目详细记录了计算机视觉算法工程师的成长路径,从基础编程知识到深度学习,再到模型部署。项目还提供了算法实习内推表、校招可投递公司汇总及技术栈笔记等实用资源,涵盖了编程开发、机器学习、图像识别、模型压缩等关键技术点,适合希望系统提升技术水平的工程师。
tensor-house - 企业AI/ML项目的全面参考工具包
AI/ML应用GithubTensorHouse企业解决方案开源项目强化学习深度学习
为企业提供营销、定价、供应链和智能制造领域的AI/ML应用参考工具包,包括Jupyter笔记本、原型应用、数据集和评估问卷,帮助快速评估项目准备度,进行数据分析和构建模型原型,适用于深度学习、强化学习和因果推断方法。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

白日梦AI

白日梦AI提供专注于AI视频生成的多样化功能,包括文生视频、动态画面和形象生成等,帮助用户快速上手,创造专业级内容。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

讯飞绘镜

讯飞绘镜是一个支持从创意到完整视频创作的智能平台,用户可以快速生成视频素材并创作独特的音乐视频和故事。平台提供多样化的主题和精选作品,帮助用户探索创意灵感。

Project Cover

讯飞文书

讯飞文书依托讯飞星火大模型,为文书写作者提供从素材筹备到稿件撰写及审稿的全程支持。通过录音智记和以稿写稿等功能,满足事务性工作的高频需求,帮助撰稿人节省精力,提高效率,优化工作与生活。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号