Project Icon

pytorch-lr-finder

PyTorch学习率范围测试工具

pytorch-lr-finder是一个基于PyTorch的学习率范围测试工具,实现了Leslie N. Smith论文中的方法和fastai的改进版本。通过在预训练阶段调整学习率,帮助用户确定最佳学习率。工具支持梯度累积和混合精度训练,适用于多种深度学习任务。简洁的API和可视化功能便于优化神经网络训练过程。

llms_tool - 多功能大语言模型训练测试工具包
GithubHuggingFaceRLHF分布式训练大语言模型开源项目预训练
llms_tool是一个基于HuggingFace的大语言模型工具包,支持多种模型的训练、测试和部署。它提供预训练、指令微调、奖励模型训练和RLHF等功能,支持全参数和低参数量训练。工具包集成WebUI和终端预测界面,以及DeepSpeed分布式训练。涵盖ChatGLM、LLaMA、Bloom等主流模型,提供多种训练方法和量化选项。
fairscale - 强化PyTorch大规模深度学习训练的开源库
FairScaleGithubPyTorch分布式训练大规模模型开源项目高性能计算
FairScale是一个开源的PyTorch扩展库,旨在提升大规模深度学习模型的训练效率。它不仅增强了PyTorch的基础功能,还引入了先进的模型扩展技术。通过提供模块化组件和简洁的API,FairScale使研究人员能够更轻松地实现分布式训练,有效应对资源受限情况下的模型扩展挑战。该库在设计时特别强调了易用性、模块化和性能优化,并支持全面分片数据并行(FSDP)等多种先进扩展技术。
SimpleTuner - AI模型训练优化脚本集 SimpleTuner
AI模型GithubSimpleTuner开源项目机器学习深度学习训练优化
SimpleTuner是一个开源的AI模型训练优化脚本集。它以简单易用为设计理念,支持多GPU训练、方面比例分桶等功能。适用于Flux、PixArt Sigma和Stable Diffusion等多种AI模型的训练。项目提供详细教程和快速入门指南,适合各级用户。作为开源平台,SimpleTuner鼓励学术交流和代码贡献。
schedule_free - 自适应训练优化器,无需预设停止时间
GithubPyTorchSchedule-Free Learning优化器动量开源项目梯度下降
Schedule-Free Learning是一种新型PyTorch优化器,无需预设训练停止时间。该方法通过结合插值和平均技术取代传统动量,提高训练效率。不依赖学习率递减调度,却能达到或超越先进调度方法的效果。支持AdamW和SGD版本,并提供实验性包装器,可与各种基础优化器兼容。这种灵活的优化方法为深度学习模型训练提供了新的可能性。
toolformer-pytorch - 语言模型自主学习工具使用,提高API调用效率
API调用GithubMetaAIPytorchStability.aiToolformer开源项目
Toolformer-Pytorch是由MetaAI开发的开源项目,旨在使语言模型能够自主调用API工具来完成任务。得益于Stability.ai的支持和开源社区的贡献,该项目显著提升了语言模型对工具的理解和使用能力。无论是时间查询还是简单的数学运算,Toolformer都表现出色,同时通过优化和微调,降低了文本困惑度。安装简单,适用于各种Python环境。
pytorch-minimize - PyTorch多变量函数优化工具集
GithubPyTorch优化函数求解开源项目最小化自动微分
pytorch-minimize是PyTorch生态系统中的多变量函数优化工具集。它集成了BFGS、共轭梯度法和牛顿法等多种算法,支持CPU和GPU运算。该库利用自动微分技术计算精确导数,无需手动提供梯度。此外,它还提供约束优化和非线性最小二乘问题的解决方案,为确定性优化任务提供自动梯度计算和GPU加速支持。
Trainer - 基于PyTorch的通用模型训练框架
GithubPyTorchTrainer多GPU训练实验日志开源项目模型训练
Trainer是一个基于PyTorch的开源模型训练框架,具有简洁的代码结构和灵活的优化控制。该框架支持自动优化、高级优化循环、批量大小查找、分布式训练和Accelerate集成。此外,Trainer提供回调功能、性能分析和多种实验日志记录选项,包括Tensorboard和ClearML等。这个框架适用于各类深度学习任务,能够简化训练流程并提升效率。
practicalAI-cn - PyTorch与Google Colab下的机器学习与深度学习实践
GithubGoogle ColabPyTorchpracticalAI开源项目机器学习深度学习
通过practicalAI-cn项目,任何水平的学习者都可以从基础到进阶掌握机器学习与深度学习技能。项目使用PyTorch实现核心算法,并提供多种notebooks,涵盖线性回归、卷积神经网络等多种模型。无需复杂的环境设置,可通过Google Colab直接运行,进行产品级的面向对象编程学习,助力从数据中获取有价值的见解。
pytorch-toolbelt - 专为PyTorch设计的Python库,提供高效研发和Kaggle竞赛所需的工具集
GithubPyTorch乌克兰俄罗斯开源项目战争深度学习
pytorch-toolbelt是一款专为PyTorch设计的Python库,提供高效研发和Kaggle竞赛所需的工具集。其功能包括灵活的编码器-解码器架构、多种模块(如CoordConv、SCSE、Hypercolumn等)、GPU友好的测试时增强(TTA)、大图像推理及常用方法,支持多种损失函数,并与Catalyst库无缝集成。这些工具旨在简化模型构建、优化和推理过程。
flashtorch - 基于PyTorch的神经网络可视化工具
FlashTorchGithubPyTorch可视化开源项目特征可视化神经网络
FlashTorch是基于PyTorch的神经网络可视化工具,通过简单的接口实现特征可视化技术,如显著性图和激活最大化。该工具兼容torchvision预训练模型和自定义PyTorch模型,有助于研究人员和开发者理解、解释及优化神经网络的内部工作机制。FlashTorch仅需几行代码即可应用,为深入分析神经网络提供了便捷途径。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号