Project Icon

ESFT

专家专门化微调提升稀疏大语言模型性能

ESFT项目提出专家专门化微调方法,针对Mixture-of-Experts架构的大语言模型进行高效定制。通过仅调整任务相关部分,该方法提高了模型效率和性能,同时降低资源消耗。项目开源了训练代码和评估脚本,方便研究人员应用于自有模型和数据集。这一技术为大规模语言模型的个性化和优化提供了新思路。

专家专门化微调

这是论文《让专家专注于自己的领域:稀疏架构大语言模型的专家专门化微调》的官方代码库,该论文由Zihan Wang、Deli Chen、Damai Dai、Runxin Xu、Zhuoshu Li和Y. Wu撰写。

ESFT旨在通过仅调整与任务相关的部分,高效地定制具有专家混合(MoE)架构的大语言模型,从而在使用更少资源和存储的同时提高效率和性能。

📰 新闻

📅 2024年8月11日: 我们现在发布了ESFT训练代码! ✨ 您现在可以用自己的模型和数据集进行尝试!

🚀 快速开始

安装和设置

git clone https://github.com/deepseek-ai/ESFT.git
cd esft

安装所需依赖

pip install transformers torch safetensors accelerate

下载必要的适配器

bash scripts/download_adapters.sh

🔧关键脚本

  1. eval_multigpu.py 此脚本评估模型在各种数据集上的性能。详细配置和说明请参见scripts/eval.sh

用法:

python eval_multigpu.py \
    --eval_dataset=translation \
    --base_model_path=deepseek-ai/ESFT-vanilla-lite \
    --adapter_dir=all_models/adapters/token/translation \
    --output_path=results/completions/token/translation.jsonl \
    --openai_api_key=YOUR_OPENAI_API_KEY
  1. get_expert_scores.py 此脚本根据评估数据集计算每个专家的分数。 用法:
python scripts/expert/get_expert_scores.py \
    --eval_dataset=translation \
    --base_model_path=deepseek-ai/ESFT-vanilla-lite \
    --output_dir=results/expert_scores/translation \
    --n_sample_tokens=131072 \
    --world_size=4 \
    --gpus_per_rank=2
  1. generate_expert_config.py 此脚本生成配置,用于转换只训练了与任务相关的任务的MoE模型,基于评估分数。 用法:
python scripts/expert/generate_expert_config.py \
    --eval_datasets=intent,summary,law,translation \
    --expert_scores_dir=results/expert_scores \
    --output_dir=results/expert_configs \
    --score_function=token \
    --top_p=0.2 # 评分函数和top_p是超参数
  1. train.pytrain_ep.py 此脚本使用由前一个脚本生成的专家配置来训练模型。train_ep.py文件使用专家并行,并已针对多GPU训练进行了优化。 用法:
python train.py \
    --base_model_path=deepseek-ai/ESFT-vanilla-lite \
    --expert_config=results/expert_configs/intent.json \
    --train_dataset=intent \
    --train_config=configs/base.yaml \
    --output_dir=results/checkpoints/intent
    
torchrun --nproc-per-node=8 train_ep.py \
    --base_model_path=deepseek-ai/ESFT-vanilla-lite \
    --expert_config=results/expert_configs/translation.json \
    --train_dataset=translation \
    --train_config=configs/base.yaml \
    --output_dir=results/checkpoints/translation

联系和支持

对于错误报告、功能请求和一般查询,请在我们的GitHub问题页面上开一个issue。请确保包含尽可能多的细节,以帮助我们快速解决您的问题。

🌟待办事项

  • ☑️ 📝 更新模型、评估脚本和专家选择脚本
  • ☑️ 🔧 更新训练脚本
  • 🔲 🚀 更多...

📚引用

如果您发现我们的代码或论文有用,请引用:

@article{wang2024letexpertsticklast,
      title={Let the Expert Stick to His Last: Expert-Specialized Fine-Tuning for Sparse Architectural Large Language Models}, 
      author={Zihan Wang and Deli Chen and Damai Dai and Runxin Xu and Zhuoshu Li and Y. Wu},
      year={2024},
      eprint={2407.01906},
      archivePrefix={arXiv},
      primaryClass={cs.CL},
      url={https://arxiv.org/abs/2407.01906}, 
}
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

白日梦AI

白日梦AI提供专注于AI视频生成的多样化功能,包括文生视频、动态画面和形象生成等,帮助用户快速上手,创造专业级内容。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

讯飞绘镜

讯飞绘镜是一个支持从创意到完整视频创作的智能平台,用户可以快速生成视频素材并创作独特的音乐视频和故事。平台提供多样化的主题和精选作品,帮助用户探索创意灵感。

Project Cover

讯飞文书

讯飞文书依托讯飞星火大模型,为文书写作者提供从素材筹备到稿件撰写及审稿的全程支持。通过录音智记和以稿写稿等功能,满足事务性工作的高频需求,帮助撰稿人节省精力,提高效率,优化工作与生活。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号