Project Icon

roberta-large-squad2

基于RoBERTa的大规模抽取式问答模型

roberta-large-squad2是一个在SQuAD 2.0数据集上微调的大规模抽取式问答模型。该模型基于RoBERTa架构,在多个问答任务中表现优异,包括SQuAD v2和对抗性问答等。它能够处理可回答和不可回答的问题,适用于广泛的问答应用场景。开发者可以通过Haystack或Transformers库轻松集成此模型,构建高性能的问答系统。

bert-large-cased-whole-word-masking-finetuned-squad - 全词掩码BERT大型模型在SQuAD数据集上优化的问答系统
BERTGithubHuggingface开源项目微调模型自然语言处理问答系统预训练模型
BERT-large-cased-whole-word-masking-finetuned-squad是一个基于全词掩码技术的大型语言模型。该模型包含24层、1024维隐藏层和16个注意力头,共3.36亿参数。在BookCorpus和Wikipedia数据集预训练后,模型在SQuAD数据集上进行了微调,专门用于问答任务。采用双向Transformer架构,通过掩码语言建模和下一句预测任务训练,能有效理解文本语义并回答上下文相关问题。
bert-base-cased-squad2 - BERT模型实现英文文本智能问答与信息提取
BERTGithubHaystackHuggingface开源项目模型深度学习自然语言处理问答模型
BERT base cased模型通过SQuAD v2数据集训练,专注于英文文本的智能问答能力。模型具备71.15%精确匹配率,支持Haystack和Transformers框架集成部署。作为Haystack生态系统的核心组件,为开发者提供可靠的文本理解和信息提取服务。
roberta-base-chinese-extractive-qa - 中文提取式问答模型简介与使用指南
GithubHuggingfaceRoBERTa开源项目提问回答普希金模型腾讯云训练数据
该项目提供了一种中文提取式问答的完整方案,通过UER-py和TencentPretrain进行模型微调,支持大规模参数和多模态预训练拓展。模型可通过UER-py或HuggingFace获取,便于快速部署问答管道。训练数据包括cmrc2018、webqa和laisi,旨在提高模型的语义理解能力,并在腾讯云上进行三轮训练以优化性能。项目还提供了详细指导,便于导入和转换模型格式,从而提高问答系统的精准性。
electra_large_discriminator_squad2_512 - ELECTRA大型判别器模型在SQuAD2.0数据集上的问答系统微调
ELECTRAGithubHuggingface开源项目机器学习模型模型微调自然语言处理问答系统
electra_large_discriminator_squad2_512是基于ELECTRA大型判别器模型在SQuAD2.0数据集上微调的问答系统。该模型在精确匹配和F1分数上分别达到87.10%和89.98%。它使用PyTorch和Transformers库实现,最大序列长度为512,经3轮训练后展现出优秀的问答性能。该项目还提供了详细的训练脚本和系统环境信息,便于其他研究者复现和改进。
xlm-roberta-large - 大规模多语言预训练模型
GithubHuggingfaceXLM-RoBERTa多语言模型开源项目机器学习模型自然语言处理预训练模型
XLM-RoBERTa是一个在2.5TB多语言数据上预训练的大型语言模型,覆盖100种语言。该模型采用掩码语言建模技术,能够生成双向文本表示。XLM-RoBERTa主要应用于序列分类、标记分类和问答等下游任务的微调。凭借其在多语言和跨语言任务中的出色表现,XLM-RoBERTa为自然语言处理领域提供了坚实的基础。
roberta-large - 大型英语预训练模型,适合多种任务优化
GithubHuggingfaceRoBERTaTransformer模型开源项目模型语言模型遮蔽语言建模预训练模型
RoBERTa是一个自监督学习的变压器模型,通过掩码语言建模(MLM)目标优化英语语言的表示。主要用于细调下游任务,如序列和标记分类以及问答。此模型预训练于包括BookCorpus和Wikipedia在内的五个大型语料库,使用BPE分词法和动态掩码训练,实现双向句子表示,并在GLUE测试中表现优异,适合在PyTorch和TensorFlow中应用。
minilm-uncased-squad2 - MiniLM抽取式问答模型在SQuAD 2.0数据集实现76分精确匹配
GithubHaystackHuggingfaceMiniLMSQuAD 2.0Transformers开源项目模型问答模型
MiniLM-L12-H384-uncased是一款专注于英文抽取式问答的开源模型。经SQuAD 2.0数据集训练后,模型可从文本中精确定位答案信息,并通过Haystack或Transformers框架便捷部署。目前在验证集评测中展现出优秀的问答性能,适合搭建生产环境的问答应用。
bert-base-uncased-squad-v1 - BERT模型在SQuAD数据集上的微调应用
BERTGithubHuggingfaceSQuAD亚马逊雨林开源项目模型模型微调问答
此项目通过在SQuAD v1数据集上微调BERT-base模型,提升其在问答任务中的表现。模型无大小写区分,经过优化训练取得了在Exact Match和F1上的优异成绩。训练环境为Intel i7-6800K CPU及双GeForce GTX 1070显卡。此模型适用于自然语言处理的问答应用,具备良好的上下文理解能力。
deberta-v2-xlarge - 强大的NLU模型在多项任务中表现优异
DeBERTaGithubHuggingface人工智能开源项目机器学习模型模型性能自然语言处理
DeBERTa-v2-xlarge是一个基于解缠注意力机制和增强型掩码解码器的自然语言理解模型。该模型拥有24层结构、1536隐藏层大小,总参数量为900M,经160GB原始数据训练。在SQuAD、GLUE等多项NLU基准测试中,DeBERTa-v2-xlarge的表现超越了BERT和RoBERTa。模型在问答、文本分类等任务中展现出优异性能,为自然语言处理领域提供了新的研究方向。
mmlw-roberta-large - 增强自然语言处理适用性的多任务学习模型
GithubHuggingfacesentence-transformers句子相似度开源项目文本分类模型特征提取聚类
该开源项目mmlw-roberta-large通过多任务学习提高了自然语言处理性能,尤其在句子相似性、分类和检索等任务上表现突出。模型适用于多种数据集,如MTEB AllegroReviews和MTEB ArguAna-PL,实现了较高的准确率和F1值。使用了sentence-transformers和transformers技术,确保在大规模数据集上的优异表现。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号