Project Icon

PyDGN

深度图网络研究与实验的Python开源库

PyDGN是一个面向深度图网络(DGNs)研究的开源Python库。该库提供自动化的数据处理、实验管理和并行计算功能,支持模型选择与风险评估。PyDGN简化了图学习实验流程,有助于快速原型设计和结果复现,为图神经网络研究提供了实用工具。它支持CPU和GPU并行计算,可同时评估多种模型配置。PyDGN适用于各类深度图网络研究,包括图分类、节点分类等任务。该库提供了完整的实验管理流程,从数据预处理到模型评估,有助于提高研究效率和结果可靠性。

DeepImage-an-Image-to-Image-technology - 强大而多样化的图像生成与转换技术集合
CycleGANDeepImageGANGithubImage-to-ImageStyleGAN开源项目
DeepImage是一个综合性的图像生成与转换技术项目,包含多种先进算法如pix2pixHD、pix2pix和CycleGAN等。该项目提供了图像生成演示、理论研究资料和实践指南,涵盖从基础到前沿的生成对抗网络(GAN)技术。DeepImage为研究人员和开发者提供了一个全面的学习和实验平台,助力探索图像生成与转换的多种可能性。
iGAN - 交互式图像生成工具,通过用户编辑实时生成图像
GANGithubiGAN交互式图像生成图像翻译开源项目深度生成模型
系统采用深度生成模型(如GAN和DCGAN),提供智能绘图界面,支持用户通过简单笔触实时生成逼真图像样本。用户可通过颜色和形状的画笔进行编辑,系统自动生成符合编辑的图像。此外,该系统也是一种交互式视觉调试工具,帮助开发者理解和可视化深度生成模型的能力与局限性。
Gymnasium - Python强化学习标准API和环境开源库
AI环境GithubGymnasiumPython库开源项目强化学习
Gymnasium是一个用于开发和比较强化学习算法的开源Python库,提供标准API和丰富的环境集。它包括经典控制、Box2D、玩具文本、MuJoCo和Atari等多种环境类型,促进算法与环境的高效交互。作为OpenAI Gym的延续,Gymnasium现由独立团队维护,提供完善的文档和活跃的社区支持。该库采用严格的版本控制以确保实验可重复性,并提供灵活的安装选项满足不同用户需求。
spektral - 基于Keras API和TensorFlow 2的Python库,专为图神经网络(GNN)提供简单灵活的框架
GithubKerasPython库Spektral图深度学习图神经网络开源项目
Spektral是一个基于Keras API和TensorFlow 2的Python库,专为图神经网络(GNN)提供简单灵活的框架。该库适用于社交网络用户分类、分子性质预测、图生成、节点聚类和链接预测等任务。Spektral包含多种流行的图深度学习层,如GCN、Chebyshev、GraphSAGE、GAT等,并提供丰富的图操作工具。最新版1.0引入了新数据集、新容器、Loader类和transforms模块,简化了数据处理和模型训练。更多信息请参阅官方文档和示例。
deep-learning-roadmap - 为开发者和研究人员提供的从入门到高级应用全覆盖,涵盖图像识别、自然语言处理等关键领域深度学习的综合资源,
Github卷积神经网络图像识别开源项目强化学习深度学习生成模型
为开发者和研究人员提供深度学习的综合资源,从入门到高级应用全覆盖,涵盖图像识别、自然语言处理等关键领域。借助本平台,您可以迅速找到所需资源,掌握最前沿的深度学习技术。
torch-points3d - 用于在点云上进行深度学习的 Pytorch 框架
CUDAGithubPyTorchtorch-points3d开源项目深度学习点云分析
一个用于点云分析的深度学习框架,基于Pytorch Geometric和Facebook Hydra。该框架支持构建复杂模型并提供高层次API,支持PointNet、PointNet++、RSConv等常见模型,便捷实现分类、分割和检测任务。推荐使用Docker安装以确保兼容性。了解更多信息,请查阅文档和示例笔记本。
gpytorch - 基于PyTorch实现的灵活高斯过程建模工具
GPU加速GPyTorchGaussian processGithubKISS-GPPyTorch开源项目
GPyTorch是一个基于PyTorch实现的高斯过程库,旨在简便地创建可扩展、灵活的高斯过程模型。它通过数值线性代数技术实现了显著的GPU加速,并集成了如SKI/KISS-GP和随机Lanczos展开等先进算法,同时能与深度学习框架无缝结合。支持Python 3.8及以上版本。更多信息、示例和教程请参阅官方文档。
RecBole-GNN - 图神经网络推荐算法开源库
GithubPyTorchRecBole-GNN图神经网络开源库开源项目推荐系统
RecBole-GNN是一个开源的图神经网络推荐算法库,基于PyTorch和RecBole构建。该库专注于复现和开发GNN推荐算法,涵盖通用、序列和社交推荐三大类别。它提供统一API、高效图处理模块和丰富的算法库,支持多种前沿GNN推荐模型。RecBole-GNN还提供详细的性能对比,为研究人员提供便捷的GNN推荐算法开发和评估平台。
Awesome-Pretraining-for-Graph-Neural-Networks - 图神经网络预训练技术论文资源库
Github图神经网络对比学习开源项目生成式预训练自监督学习预训练
该资源库全面收集了图神经网络预训练相关论文,按发表年份、图类型、预训练策略、调优策略和应用领域分类。内容涵盖静态图、动态图、异构图等图类型,以及生成式、对比学习、多任务学习等预训练策略。同时包含prompt tuning等调优方法,并涉及推荐系统、生物学等应用领域。资源库不断更新,为图神经网络预训练研究提供重要参考。
denoising-diffusion-pytorch - 生成模型新方法:Pytorch中的Denoising Diffusion
Denoising Diffusion Probabilistic ModelGithubLangevin采样Pytorch开源项目扩散模型生成建模
Denoising Diffusion Probabilistic Model在Pytorch中的实现,通过去噪得分匹配估计数据分布梯度,并使用Langevin采样生成样本。这种方法可能成为GANs的有力竞争者。项目支持多GPU训练,提供详细的安装和使用指南,是研究人员和开发者的高效工具,支持1D序列数据和图像数据的生成和训练。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号