Project Icon

PFENet

优化少样本分割的先验引导特征增强网络

PFENet作为少样本分割网络的代表作,利用先验引导特征增强技术优化分割效果。在PASCAL-5i和COCO等主流数据集上,PFENet展现出卓越性能。该开源项目包含完整实现代码、预训练模型和详细文档,为计算机视觉研究提供了宝贵资源。

diffseg - 基于稳定扩散的零样本图像分割方法
DiffSegGithubStable Diffusion开源项目无监督学习注意力机制零样本分割
DiffSeg是一种利用稳定扩散模型注意力信息的无监督零样本图像分割方法。这个开源项目实现了DiffSeg算法,并提供环境设置指南、运行说明和基准测试。DiffSeg在CoCo-Stuff-27和Cityscapes数据集上表现出色,为计算机视觉领域提供了新的解决方案。特别适合研究无监督学习和零样本学习的专业人士,以及需要高效、灵活图像分割方案的研究人员和开发者。
SePiCo - 基于语义引导像素对比的域自适应语义分割方法
GithubSePiCo像素对比域适应开源项目深度学习语义分割
SePiCo是一种创新的域适应语义分割框架,通过语义引导的像素对比学习促进跨域像素嵌入空间的类别判别和平衡。该方法在多个域适应任务中显著提升了性能,包括GTAV到Cityscapes、SYNTHIA到Cityscapes和Cityscapes到Dark Zurich。SePiCo的突出表现使其被选为ESI高被引论文,展现了其在计算机视觉领域的重要影响。
upernet-swin-large - Swin Transformer 与 UperNet 结合的语义分割方法
GithubHuggingfaceSwin TransformerUperNet开源项目模型特征金字塔网络视觉语义分割
UperNet 利用 Swin Transformer 大型网络进行语义分割,框架包含组件如主干网络、特征金字塔网络及金字塔池模块。可与各种视觉主干结合使用,对每个像素预测语义标签,适合语义分割任务,并可在 Hugging Face 平台找到特定任务的优化版本。通过 Swin Transformer 与 UperNet 的结合,用户可在场景理解中实现精确的语义分割。
clipseg-rd64-refined - 基于文本和图像提示的先进图像分割策略
CLIPSegGithubHuggingface一样本学习图像分割复杂卷积开源项目模型零样本学习
该模型引入先进的复杂卷积技术,支持零样本和单样本图像分割。结合文本与图像提示,该模型在图像分析中提供高效且准确的分割性能。
UNetPlusPlus - 嵌套U-Net架构优化医学图像分割
GithubUNet++医学影像卷积神经网络图像分割开源项目深度学习
UNet++是一种改进的医学图像分割架构,通过重新设计跳跃连接和密集连接解码器,解决了U-Net的架构深度和连接设计问题。项目提供Keras和PyTorch实现,并获得多个第三方支持。UNet++在医学图像分割任务中表现优异,为研究提供了有力工具。该项目已在GitHub开源,欢迎研究者使用和贡献。
Pytorch-UNet - PyTorch实现的高效U-Net语义分割模型
CarvanaGithubPyTorchU-Net开源项目深度学习语义分割
Pytorch-UNet项目提供定制的U-Net实现,支持多类别分割任务,包括车体遮罩、肖像分割和医学图像分割。兼容PyTorch 1.13及以上版本,提供Docker镜像和预训练模型,便于集成和使用。模型在高分辨率图像上训练,取得了0.988的Dice系数,并支持自动混合精度,可通过Weights & Biases实时监控训练进度。
SOLO - 无框的实例分割算法,可直接输出实例掩码和类别概率,并具备高质量掩码预测和顶级性能
GithubResNet-101SOLOSOLOv2开源项目目标分割高质量遮罩预测
SOLO项目实现了SOLO和SOLOv2两种完全无框的实例分割算法,可直接输出实例掩码和类别概率,并具备高质量掩码预测和顶级性能。该项目基于mmdetection,支持多GPU和单GPU训练,并提供多种预训练模型下载,包括轻量级模型。对于研究人员来说,这些工具显著提高了分割精度和训练速度,适用于各种应用场景。
oneformer_ade20k_swin_tiny - 通过单一模型实现多任务图像分割的统一框架
GithubHuggingfaceOneFormer图像分割实例分割开源项目模型深度学习语义分割
OneFormer通过单一架构实现语义、实例和全景分割的统一处理。基于ADE20k数据集训练并采用Swin主干网络,这个紧凑型模型仅需一次训练即可完成多种图像分割任务。其独特的任务令牌机制实现了训练引导和推理动态化,为图像分割领域提供了高效的解决方案。
U-2-Net - 深度嵌套U结构助力显著对象精准检测
GithubU2-Net人像分割图像背景移除开源项目模型训练视觉应用
U-2-Net,一项荣获2020年模式识别最佳论文奖的创新技术,通过其深度嵌套U结构显著提升对象检测精准度。此技术广泛适用于图像处理、视频分析、背景移除及人像生成等领域,并提供丰富的开发资源助力应用的快速迭代。
EVF-SAM - 基于早期视觉语言融合的文本引导图像分割模型
EVF-SAMGithubSAM模型图像分割开源项目视觉语言融合语义分割
EVF-SAM项目通过早期视觉语言融合技术扩展了SAM模型的能力,实现高精度的文本引导图像分割。该模型在T4 GPU上可在几秒内完成推理,计算效率高。最新版本基于SAM-2支持视频分割,展现了零样本文本引导视频分割能力。EVF-SAM在多个数据集上表现出色,为计算机视觉领域提供了新的解决方案。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号