Project Icon

distilbert-base-uncased-finetuned-sst-2-english-openvino

基于DistilBERT的情感分析模型 OpenVINO优化版达91.3%准确率

本项目基于DistilBERT模型,在SST-2数据集上微调后转换为OpenVINO格式,专注于文本情感分类。模型在开发集上的准确率达91.3%,并支持通过Transformers pipeline快速部署。OpenVINO优化提升了推理效率,使其更适合生产环境中的情感分析应用。项目提供了简单的使用示例,方便开发者快速集成和应用。

my_awesome_model - DistilBERT微调的高效文本分类模型
DistilBERTGithubHugging FaceHuggingface开源项目机器学习模型模型微调自然语言处理
my_awesome_model是一个基于distilbert-base-uncased微调的文本分类模型。该模型在未知数据集上训练,经过3轮迭代后,训练损失降至0.0632,验证损失为0.2355,训练准确率达92.95%。模型采用Adam优化器和多项式衰减学习率。虽然缺乏具体任务信息,但其性能表现显示了良好的文本分类潜力。
bertweet-base-sentiment-analysis - 英文推文情感分析模型 BERTweet-Sentiment
BERTweetGithubHuggingface开源项目情感分析推特数据机器学习模型模型自然语言处理
bertweet-base-sentiment-analysis是一个基于SemEval 2017语料库训练的英文情感分析模型。它利用BERTweet作为基础,能够识别文本中的积极、消极和中性情感。作为pysentimiento库的组成部分,该开源项目主要面向非商业用途和科研领域,为自然语言处理研究提供了实用的情感分析工具。
twitter-roberta-base-emotion-multilabel-latest - 精确识别推文情绪的多标签分类模型
GithubHuggingfacetweetnlptwitter-roberta-base-emotion-multilabel-latest多标签分类开源项目情感分析机器学习模型
该项目微调了cardiffnlp/twitter-roberta-base-2022-154m模型,专注于SemEval 2018情感分析任务,显著增强推文的多标签情绪分类能力。模型在测试集上的F1 micro为0.7169,F1 macro为0.5464,是推文情感分析的理想选择。适用于tweetnlp和transformers中的文本分类任务,支持通过Python加载工具进行灵活使用,有助于社交媒体情感解析。
indonesian-roberta-base-sentiment-classifier - 印尼语RoBERTa情感分类器:高精度的开源NLP工具
GithubHuggingfaceRoBERTa印尼语情感分类开源项目情感分析模型深度学习自然语言处理
这是一个基于RoBERTa架构的印尼语情感分类器,在indonlu的SmSA数据集上微调而成。模型在评估集上展现出卓越性能,准确率达94.36%,F1值达92.42%。它支持多种深度学习框架,易于集成到各类情感分析应用中。作为开源项目,该模型为印尼语自然语言处理领域提供了一个高效可靠的工具,推动了相关研究和应用的发展。模型采用了124M参数的RoBERTa Base架构,在印尼语评论和评论数据上训练。它不仅在评估集上表现优异,在基准测试集上也达到了93.2%的准确率和91.02%的F1值。该项目提供了详细的使用说明和评估结果,方便研究者和开发者快速上手和复现实验。
stackoverflow-roberta-base-sentiment - 软件工程文本情感分析的RoBERTa模型
GithubHuggingfaceRoBERTaStackOverflow开源项目情感分析模型自然语言处理软件工程
stackoverflow-roberta-base-sentiment是一个专门用于软件工程文本情感分析的RoBERTa模型。它基于cardiffnlp/twitter-roberta-base-sentiment模型,使用StackOverflow4423数据集进行微调。该模型能够分析软件工程相关文本的正面、中性和负面情感倾向。通过简单的Python代码,开发者可以快速实现情感分析。这个开源项目为软件开发社区提供了一个分析开发者反馈和讨论的实用工具。
finbert - 针对金融领域的BERT情感分析预训练模型
BERTFinBERTGithubHuggingfaceProsus开源项目模型自然语言处理金融情感分析
FinBERT是一个针对金融文本情感分析的预训练NLP模型。该模型基于BERT架构,通过在大规模金融语料库上进行训练和微调,专门用于金融领域的情感分类。FinBERT能够为文本输出正面、负面或中性三种情感标签的概率分布,旨在提升金融文本分析的准确性,为投资决策和市场分析提供客观依据。
bert-base-uncased-finetuned-semeval24 - BERT微调模型在文本分类任务中的出色表现
F1GithubHuggingfacebert-base-uncased准确率开源项目损失模型精调
该微调模型基于google-bert/bert-base-uncased,采用Adam优化器和线性学习率调度策略,经过5个学习周期,在评估集合上取得了0.8254的准确率和0.8237的F1值,适用于需要精确度的文本分类任务。
indonesia-bert-sentiment-classification - 基于IndoBERT模型的印尼情感分类工具
GithubHuggingfaceIndoBERTIndonesian BERT Base Sentiment ClassifierProsa情感数据集text-classification开源项目情感分析模型
基于IndoBERT和Prosa数据集的模型,提供印尼语文本情感分析与分类,准确识别正面、中立和负面情绪,适用于自然语言处理任务。
bert-base-cased - 使用预训练双向Transformer模型提升语言理解能力
BERTGithubHuggingface句子分类开源项目掩码语言建模模型自监督学习预训练
BERT是一种通过自监督学习预训练的双向Transformer模型,旨在改善英语语言理解。基于大型语料库的预训练,使其能学习句子的双向表示,适用于序列分类、标记分类和问答任务。通过Masked Language Modeling和Next Sentence Prediction目标进行预训练,BERT在各类任务中展现出卓越表现,但注意选择合适的训练数据以避免潜在偏见。
toxic-comment-model - DistilBERT微调的高性能在线评论毒性分类模型
DistilBERTGithubHuggingface开源项目文本分类有毒评论机器学习模型自然语言处理
该模型是基于DistilBERT微调的在线评论毒性分类器,在测试集上达到94%准确率和0.59 F1分数。它易于使用,适合处理各类在线评论,但在某些身份群体相关评论上可能存在偏见。模型使用Kaggle竞赛数据集训练,用户在应用时应注意其在特定群体评论分类上的局限性。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号