Project Icon

kubler

基于Bash的Docker镜像构建和管理工具

Kubler是一个基于Bash的Docker镜像构建和管理工具。它提供灵活的构建流程,支持参数化Dockerfile、自定义构建容器和自动化测试。Kubler使用Gentoo作为基础系统,允许用户完全控制镜像内容和更新周期。该工具适合需要管理大量Docker镜像的DevOps工程师,也可作为便携式Gentoo开发环境。

Wikipedia said: In much the same way as the trade or vocation of smithing produced the common English surname Smith and the German name Schmidt, the cooper trade is also the origin of German names like Kübler.

There is still demand for high-quality wooden barrels containers, and it is thought that the highest-quality barrels containers are those hand-made by professional coopers kublers.

Kubler

A generic, extendable build orchestrator, in Bash. The default batteries focus on creating and maintaining Docker base images.

Table Of Contents

Why Should You Care?

Perhaps:

  1. You love Docker but are annoyed by some of the restrictions of it's build command that keep getting into your way. Wouldn't it be nice if you could docker build your images with all docker run args, like -v, at your disposal? Or if your Dockerfile was fully parameterizable?
  2. You are a SysAdmin or DevOps engineer who seeks complete governance over the contents of their container images, with full control of the update cycle and the ability to track all software version changes from a centralized vcs repository.
  3. You need to manage a lot of Docker base/service images in a sane way and want peace of mind with automated post-build tests.
  4. You are a Gentoo user and want to build slim Docker images with a toolset you are familiar with. Not having to wrestle with CrossDev would also be a plus.
  5. You are looking for an interactive OS host agnostic Gentoo playground or portable ebuild development environment.
  6. You want to create custom root file systems, possibly for different cpu architectures and/or libc implementations (i.e. musl, uclibc, etc) in an isolated and repeatable manner.

Requirements

Kubler

  • Bash version 4.2+, using 4.4+ is highly recommended due to bugs in previous versions.

Optional:

  • GPG for download verification
# Assuming a working gpg setup just import the Gentoo ebuild repository signing key:
gpg --keyserver keys.gentoo.org --recv-keys E1D6ABB63BFCFB4BA02FDF1CEC590EEAC9189250
  • rlwrap for command history

Docker or Podman

  • Working Docker or Podman setup
  • Git
  • jq to parse Docker/Podman json output

Installation

On Gentoo

An ebuild can be found at https://github.com/edannenberg/kubler-overlay/

Add the overlay (see link for instructions) and install as usual:

emerge -av kubler

On macOS

The standard version of Bash in macOS is too old. Easiest way to upgrade to a later version is to use Homebrew. Once Homebrew is installed, update Bash:

    $ brew install bash

This will install an updated version of Bash in /usr/local/bin/. To make it your default shell, you need to edit Advanced Options... in System Preferences. Just right-click your user icon to find the option.

Also, macOS does not load ~/.bashrc by default, but uses ~/.bash_profile, so when following the instructions below, make sure to edit the correct file.

Manual Installation

Kubler has been tested on Gentoo, CoreOS and macOS. It should run on all Linux distributions. Feel free to open an issue or ask on Discord if you run into problems.

  1. Clone the repo or download/extract the release archive to a location of your choice, i.e.
    $ cd ~/tools/
    $ curl -L https://github.com/edannenberg/kubler/archive/master.tar.gz | tar xz
  1. Optional, add kubler.sh to your path

The recommended way is to add the following at the end of your ~/.bashrc file, don't forget to adjust the Kubler path for each line accordingly:

export PATH="${PATH}:/path/to/kubler/bin"
# optional but highly recommended, adds bash completion support for all kubler commands
source /path/to/kubler/lib/kubler-completion.bash

Note: You will need to open a new shell for this to take effect, if this fails on a Linux SystemD host re-logging might be required instead.

Initial Configuration

Kubler doesn't require any further configuration but you may want to review the main config file located at /etc/kubler.conf. If the file doesn't exist the kubler.conf file in Kubler's root folder is used as a fallback.

All of Kubler's runtime data, like user config overrides, downloads or custom scripts, is kept at a path defined via KUBLER_DATA_DIR. This defaults to ~/.kubler/, which is suitable if user accounts have Docker/Podman access on the host. If you plan to use Docker/Podman/Kubler only with sudo, like on a server, you may want to use /var/lib/kubler, or some other location, as data dir instead.

Managing your KUBLER_DATA_DIR with a VCS tool like Git is supported, a proper .gitignore is added on initialization.

Uninstall

  1. Remove any build artifacts and container images created by Kubler:
    $ kubler clean -N
  1. Remove Kubler itself:

    • On Gentoo and ebuild install: emerge -C kubler then remove the kubler overlay
    • Manual install: reverse the steps you did during manual installation
  2. Delete any namespace dirs and configured KUBLER_DATA_DIR (default is ~/.kubler/) you had in use, this may require su permissions.

Tour de Kubler

The Basics

To get a quick overview of available commands/options:

$ kubler --help

Or to view details for a specific command:

$ kubler build -h

Per default almost all of Kubler's commands will need to be run from a --working-dir, if the option is omitted the current working dir of the executing shell is used. It behaves much like Git in that regard, executing any Kubler command from a sub directory of a valid working dir will also work as expected.

A --working-dir is considered valid if it has a kubler.conf file and either an images/ dir, or one ore more namespace dirs, which are just a collection of images.

Kubler currently ships with Docker and Podman build engines. The rest of this tour will focus on building Docker images, it's worth noting that the build process may be completely different, i.e. it may not involve Gentoo or Docker at all, for other build engines.

If you are not familiar with Gentoo some of it's terms you will encounter may be confusing, a short 101 glossary:

stage3A tar ball provided by Gentoo which on extraction provides an almost-complete root file system for a Gentoo installation
PortageGentoo's default package manager, this is where all the magic happens
emergePortage's main executable
ebuildtext file which identifies a specific software package and how Portage should handle it
Portage TreeCategorized collection of ebuilds, Gentoo ships with ~20k ebuilds
Portage OverlayAdditional ebuild repository maintained by the community/yourself

Every Image needs a Home - Working Dirs and Namespaces

To accommodate different use cases there are three types of working dirs:

multiThe working dir is a collection of one or more namespace dirs
singleThe working dir doubles as namespace dir, you can't create a new namespace in it, but you save a directory level
localSame as multi but --working-dir is equal to KUBLER_DATA_DIR

First switch to a directory where you would like to store your Kubler managed images or namespaces:

$ cd ~/projects

Then use the new command to take care of the boiler plate, choose 'single' when asked for the namespace type:

    $ kubler new namespace mytest
    $ cd mytest/

Although not strictly required it's recommended to install Kubler's example images by running:

$ kubler update

Hello Image

Let's start with a simple task and dockerize [Figlet][], a nifty tool that produces ascii fonts. First create a new image stub:

$ kubler new image mytest/figlet

When asked for the image parent, enter kubler/bash and bt when asked for tests:

»»» Extend an existing Kubler managed image? Fully qualified image id (i.e. kubler/busybox) or scratch
»[?]» Parent Image (scratch): kubler/bash
»»»
»»» Add test template(s)? Possible choices:
»»»   hc  - Add a stub for Docker's HEALTH-CHECK, recommended for images that run daemons
»»»   bt  - Add a stub for a custom build-test.sh script, a good choice if HEALTH-CHECK is not suitable
»»»   yes - Add stubs for both test types
»»»   no  - Fck it, we'll do it live!
»[?]» Tests (hc): bt
»»»
»[✔]» Successfully created new image at projects/mytest/images/figlet

A handy feature when working on a Kubler managed image is the --interactive build arg. As the name suggests it allows us to poke around in a running build container and plan/debug the image build. Let's give it a try:

$ kubler build mytest/figlet -i

This will also build any missing parent images/builders, so the first run may take quite a bit of time. Don't worry, once the local binary package cache and build containers are seeded future runs will be much faster. When everything is ready you are dropped into a new shell:

»[✔]»[kubler/bash]» done.
»»»»»[mytest/figlet]» using: docker / builder: kubler/bob-bash
kubler-bob-bash / #

To search Portage's package db you may use eix, or whatever your preferred method is:

kubler-bob-bash / # eix figlet
* app-misc/figlet
     Available versions:  2.2.5 ~2.2.5-r1
     Homepage:            http://www.figlet.org/
     Description:         program for making large letters out of ordinary text

* dev-php/PEAR-Text_Figlet

As with most package managers, software in Portage is grouped by categories. The category and package name combined form a unique package atom, in our case we want to install app-misc/figlet.

Now manifest the new found knowledge by editing the image's build script:

    kubler-bob-bash / # nano /config/build.sh

Note: The /config folder in the build container is the host mounted image directory at mytest/images/figlet/. Feel free to use your local IDE/editor to edit build.sh instead.

Add the app-misc/figlet package atom to the _packages variable in build.sh:

_packages="app-misc/figlet"

Then start a test run of the first build phase (more on that later), if you are in a hurry you may skip this step:

kubler-bob-bash / # kubler-build-root

Once this finishes exit the interactive builder by hitting crtl+d or typing exit. All that is left to do is building the actual image:

$ kubler build mytest/figlet -nF

The args are short hand for --no-deps and --force-full-image-build, omitting -n would also rebuild all parent images, which can be handy but is just a waste of time in this case.

    »[✘]»[mytest/figlet]» fatal: build-test.sh for image mytest/figlet:20190228 failed with exit signal: 1

Oops, looks like we forgot the image test. Let's fix that by editing the mentioned build-test.sh file:

    #!/usr/bin/env sh
    set -eo pipefail

    # check figlet version string
    figlet -v | grep -A 2 'FIGlet Copyright' || exit 1

Not exactly exhausting but it will do for now. Rebuild the image again but this time only pass -f instead of -F, this too forces an image rebuild but skips the first build phase:

$ kubler build mytest/figlet -nf
»[✔]»[mytest/figlet]» done.
$ docker run -it --rm mytest/figlet figlet foooo

Anatomy of an Image

$ tree images/figlet
images/figlet/
├── Dockerfile            <- generated, never edit this manually
├── Dockerfile.template   <- standard Dockerfile, except it's fully parameterizable
├── PACKAGES.md           <- generated, lists all installed packages with version and use flags
├── README.md             <- optional, image specific documentation written by you
├── build-test.sh         <- optional, if the file exists it activates a post-build test
├── build.conf            <- general image/builder config, sourced on the host
├── build.sh              <- configures the first build phase, only sourced in build containers

The stub files generated with the new command are heavily commented with further details.

Understanding the Build Process

After executing a build command an image dependency graph is generated for the passed target ids by parsing the IMAGE_PARENT and BUILDER vars in the respective build.conf files. You can visualize the graph for any given target ids with the dep-graph command:

$ kubler dep-graph -b kubler/nginx mytest

Once all required data is gathered, each missing, as in not already built, image will go through a two phase build process:

  1. The configured builder image is passed to docker run to produce a rootfs.tar file in the image folder

    • mounts current image dir into a fresh build container as /config
    • executes build-root.sh (a generic script provided by Kubler) inside build container
    • build-root.sh reads build.sh from the mounted /config directory
    • if configure_builder() hook is defined in build.sh, execute it
    • package.installed file is generated which is used by depending images as [package.provided][]
    • ROOT env is set to custom path
    • if configure_rootfs_build() hook is defined in build.sh, execute it
    • _packages defined in build.sh are installed via Portage at custom empty root directory
    • if finish_rootfs_build() hook is defined in build.sh, execute it
    • ROOT dir is packaged as rootfs.tar and placed in image dir on the host
    • preserve exact builder state for child images by committing the used build container as a new builder image

The build-root.sh file effectively just uses a feature of Gentoo's package manager that allows us to install any given _packages, with all it's dependencies, at a custom path by setting the ROOT env in the build container. The other piece to the puzzle is Portage's [package.provided][] file which is constantly updated and preserved by committing the build container as a new builder image after each build. Thanks to Docker's shared layers the overhead of this is fairly minimal.

Kubler's default build container names generally start with bob, when a new build container state is committed the current image name gets appended. For example kubler/bob-openssl refers to the container used to build the kubler/openssl image. Any image that has kubler/openssl as IMAGE_PARENT will use kubler/bob-openssl as it's build container.

There are no further assumptions or magic, the hooks in build.sh

项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

白日梦AI

白日梦AI提供专注于AI视频生成的多样化功能,包括文生视频、动态画面和形象生成等,帮助用户快速上手,创造专业级内容。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

讯飞绘镜

讯飞绘镜是一个支持从创意到完整视频创作的智能平台,用户可以快速生成视频素材并创作独特的音乐视频和故事。平台提供多样化的主题和精选作品,帮助用户探索创意灵感。

Project Cover

讯飞文书

讯飞文书依托讯飞星火大模型,为文书写作者提供从素材筹备到稿件撰写及审稿的全程支持。通过录音智记和以稿写稿等功能,满足事务性工作的高频需求,帮助撰稿人节省精力,提高效率,优化工作与生活。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号