Project Icon

EEG-Conformer

结合卷积和自注意力的EEG解码与可视化工具

EEG Conformer是一种结合卷积和自注意力机制的EEG分类与可视化工具。其卷积模块提取时间和空间上的局部特征,自注意力模块捕捉全局关联,最终通过全连接层进行分类预测。此外,EEG Conformer还具备将类激活映射到脑拓扑图的可视化功能。支持Python 3.10和Pytorch 1.12,在多个BCI竞赛数据集上表现出色。

QFormer - 四边形注意力机制提升视觉Transformer性能
GithubVision Transformer图像分类开源项目注意力机制目标检测计算机视觉
QFormer是一种创新的视觉Transformer模型,采用四边形注意力机制替代传统窗口注意力。该模型通过可学习的四边形回归模块,将默认窗口转换为目标四边形进行计算,从而更好地建模不同形状和方向的目标。在图像分类、目标检测、语义分割和人体姿态估计等多项视觉任务中,QFormer在保持低计算成本的同时,性能显著优于现有的视觉Transformer模型。
bertviz - 利用BERT、GPT2等模型进行注意力机制可视化
BertVizGithubHuggingfaceJupyter NotebookTransformerself-attention开源项目
BertViz是一个交互式工具,可视化BERT、GPT2、T5等Transformer模型的注意力机制。支持在Jupyter和Colab中运行,提供head view、model view、neuron view三种独特视角。通过简便的Python API调用,大多数Huggingface模型均兼容。通过Colab教程,可快速尝试这些可视化功能。
Autoformer - 具有自相关性的分解变压器,用于长期序列预测
AutoformerGithubTransformer开源项目时间序列预测自动相关机制长期预测
Autoformer是一种长时间序列预测的通用模型,采用分解变压器和自动相关机制,实现38%的预测精度提升,覆盖能源、交通、经济、天气和疾病等应用领域。最近,该模型已被纳入Hugging Face和Time-Series-Library,并在2022年冬奥会中用于天气预报。Autoformer不同于传统Transformer,不需位置嵌入,具备内在的对数线性复杂度,易于实现和复现。
transformers-interpret - 快速解读Transformer模型的工具,只需2行代码
GithubTransformers Interprettransformers可视化开源项目文本分类解释工具
Transformers-interpret是一款为Transformer模型设计的解释工具,只需简单代码即可实现。支持文本和计算机视觉模型,并可在笔记本中展示或保存为PNG和HTML文件。通过导入预训练模型和tokenizer,用户能快速获得预测分类解释,并提供可视化功能。此项目基于Captum库构建,支持多标签分类等功能,帮助开发者深入理解模型决策。
EFG - 高效灵活的深度学习框架支持多项计算机视觉任务
3D目标检测EFGGithub开源项目深度学习框架目标跟踪计算机视觉
EFG是一个高效、灵活且通用的深度学习框架,采用最小化设计。该框架支持2D和3D目标检测、全景分割等多种计算机视觉任务,并在Waymo和nuScenes等数据集上展现优异性能。EFG集成了多个最新研究成果,如TrajectoryFormer和ConQueR,为3D目标检测和跟踪领域提供创新解决方案。研究人员可利用EFG的项目模板探索各种研究主题。
AbSViT - 创新视觉注意力模型实现自适应分析合成
AbSViTGithub图像分类开源项目视觉注意力计算机视觉语义分割
AbSViT是一个创新视觉注意力模型,采用分析合成方法实现自适应的自上而下注意力机制。该模型在ImageNet分类和语义分割任务中表现优异,尤其在鲁棒性测试中展现出色性能。AbSViT能够适应单目标和多目标场景,并根据不同问题动态调整注意力。这一模型为计算机视觉领域开辟了新的研究方向,有望在多种视觉任务中发挥重要作用。
ETSformer-pytorch - 基于PyTorch的先进时间序列Transformer模型
ETSformerGithubPytorchTransformer开源项目指数平滑时间序列预测
ETSformer-pytorch是一个开源的时间序列分析工具,基于PyTorch实现了先进的Transformer模型。该项目集成了多头指数平滑注意力机制和频率选择功能,适用于时间序列预测和分类任务。ETSformer-pytorch提供简单的安装和使用方法,支持灵活的模型配置,并包含专门的分类包装器。这一工具为研究人员和开发者提供了处理复杂时间序列数据的有效解决方案。
GroupMixFormer - 视觉Transformer的群组混合注意力革新
GithubGroupMixFormer图像分类开源项目自注意力机制视觉Transformer计算机视觉
GroupMixFormer是一种创新的视觉Transformer模型,引入群组混合注意力(GMA)机制来增强传统自注意力。GMA可同时捕捉不同尺度的token和群组相关性,显著提升模型表征能力。在多项计算机视觉任务中,GroupMixFormer以较少参数实现了领先性能。其中GroupMixFormer-L在ImageNet-1K分类上达到86.2% Top-1准确率,GroupMixFormer-B在ADE20K分割上获得51.2% mIoU,展现出强大潜力。
enformer-pytorch - 基于深度学习的基因表达预测工具
DeepmindEnformerGithubHuggingfacePytorch基因表达预测开源项目
此项目实现了Deepmind的Enformer模型在Pytorch框架下的应用,用于预测基因表达,并支持微调预训练模型以适应下游任务。用户可以通过简易安装和提供的代码示例快速使用该模型。此外,该项目还包含染色质可及性预测的微调方法,并支持从Huggingface下载预训练权重。在内存优化和详细的安装、使用说明方面进行了多项改进,帮助用户高效地进行基因组数据分析和预测。
ecco - 使用交互式可视化工具理解自然语言处理模型
EccoGithubTransformer模型可视化开源项目自然语言处理解释性
Ecco是一个Python库,通过交互式可视化工具解释基于Transformer的自然语言处理模型。它专注于探索预训练模型,功能包括特征归因、神经元激活捕获及可视化、Token处理过程等。支持GPT2、BERT、RoBERTA等多种模型,帮助理解Transformer模型的内部机制和决策过程。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号