Project Icon

channel-pruning

通道剪枝技术加速深度神经网络

Channel Pruning 项目开发了一种通道剪枝技术,用于加速深度神经网络。该技术显著提高了 VGG-16、ResNet-50 等模型的推理速度,同时保持了较高准确率。项目还包含针对 Faster R-CNN 的剪枝方法,为计算机视觉任务提供了高效解决方案。具体实现了 VGG-16 模型 4 倍和 5 倍的加速,ResNet-50 模型 2 倍加速,以及 Faster R-CNN 2 倍和 4 倍加速。这些优化后的模型在 ImageNet 分类和目标检测任务上仍保持了较高性能。项目提供了代码和预训练模型,方便研究者复现实验结果。

amc - 自动化模型压缩技术提升移动设备AI性能
AutoMLGithubImageNetMobileNet剪枝开源项目模型压缩
AMC (AutoML for Model Compression) 是一种创新的自动化模型压缩方法,专为优化移动设备上的深度学习模型而设计。该方法通过自动搜索剪枝策略、导出压缩权重和微调,成功将MobileNet等模型的计算量减少50%,同时维持或提升准确率。AMC不仅适用于MobileNet-V1和V2,还提供PyTorch和TensorFlow格式的压缩模型,为移动设备上的高效AI应用提供了新的可能性。
nncf - Neural Network Compression Framework:高效神经网络推理压缩算法
GithubNeural Network Compression FrameworkONNXOpenVINOPyTorchTensorFlow开源项目
Neural Network Compression Framework (NNCF) 提供一套后训练和训练时的优化算法,用于在 OpenVINO 中优化神经网络推理,保证最小的精度损失。NNCF 支持 PyTorch、TensorFlow 和 ONNX 等模型,并提供示例展示不同压缩算法的使用案例。NNCF 还支持自动化模型图转换、分布式训练和多种算法的无缝组合,支持将压缩后的 PyTorch 模型导出为 ONNX 检查点及将 TensorFlow 模型导出为 SavedModel 格式。
TinyNeuralNetwork - 高效易用的深度学习模型压缩框架
GithubTinyNeuralNetwork开源项目模型压缩深度学习神经网络量化训练
TinyNeuralNetwork是一个开源的深度学习模型压缩框架,提供神经架构搜索、剪枝、量化和模型转换等功能。该框架支持计算图捕获、依赖解析、多种剪枝算法、量化感知训练和模型转换,为深度学习模型优化提供全面解决方案。TinyNeuralNetwork已应用于天猫精灵、海尔电视等超过1000万IoT设备,实现AI能力部署。
VanillaNet - 高效简约的深度学习神经网络架构
GithubVanillaNet开源项目模型效率深度学习神经网络计算机视觉
VanillaNet是一种创新的神经网络架构,专注于简洁性和效率。它摒弃了复杂的快捷连接和注意力机制,仅使用较少的层数就能保持出色的性能。该项目展示了精简架构也能实现有效结果,为计算机视觉领域开辟了新路径,挑战了基础模型的现状。与主流模型相比,VanillaNet在保持相当性能的同时,具有更少的层数和更快的推理速度。
DCNv4 - 为视觉应用设计的高效算子,通过优化空间聚合和内存访问
DCNv4Github可变形卷积开源项目深度学习神经网络计算机视觉
DCNv4是一种为视觉应用设计的高效算子。通过优化空间聚合和内存访问,它解决了DCNv3的局限性。DCNv4在图像分类、分割和生成等任务中表现优异,收敛和处理速度显著提升,前向速度提高3倍以上。其卓越的性能和效率使DCNv4成为未来视觉模型的潜力基础构建块。
neural-compressor - 开源深度学习模型压缩工具库
GithubIntel Neural Compressor大语言模型开源项目模型压缩深度学习框架量化
Neural Compressor是一款开源深度学习模型压缩工具库,支持TensorFlow、PyTorch和ONNX Runtime等主流框架。它提供量化、剪枝、知识蒸馏等多种压缩技术,适用于Intel等多种硬件平台。该工具支持大语言模型优化,并与主流云服务和AI生态系统集成。其自动化的精度感知量化策略有助于平衡模型性能和精度。
PaddleSlim - 深度学习模型压缩工具库PaddleSlim:低比特量化、知识蒸馏、稀疏化和结构搜索
GithubPaddleSlim剪枝开源项目模型压缩深度学习量化
PaddleSlim是一个深度学习模型压缩的工具库,提供低比特量化、知识蒸馏、稀疏化和模型结构搜索等策略。支持自动化压缩,量化预测能加速2.5倍,模型体积减少3.9倍。提供YOLOv8自动化压缩示例,并优化了在Nvidia GPU和ARM设备上的性能。适用于视觉和自然语言处理任务。支持PaddlePaddle和PaddleLite多个版本,适合有模型压缩需求的开发者使用。
awesome-ml-model-compression - 机器学习模型压缩与加速技术资源汇总
AI加速Github开源项目机器学习模型压缩深度学习神经网络
本项目汇总了机器学习模型压缩和加速领域的优质资源,包括研究论文、技术文章、教程和工具库等。涵盖量化、剪枝、知识蒸馏和轻量级网络设计等多种技术方法。为研究人员和工程师提供了优化深度学习模型性能和效率的重要参考。项目内容持续更新,欢迎提交新的相关资源。
sparsify - 机器学习模型推理优化解决方案
GithubNeural MagicSparsify开源项目推理加速模型优化深度学习
Sparsify使用先进的剪枝、量化和蒸馏算法,在加速推理的同时保持模型精度。该工具由两部分组成:Sparsify Cloud,提供实验创建、管理和结果比较的在线平台;Sparsify CLI/API,作为Python包和GitHub库,支持本地实验运行与云端同步。当前版本正逐步转向大语言模型优化。
gan-compression - 条件生成对抗网络的高效压缩技术
GAN CompressionGithub图像生成开源项目性能优化条件生成对抗网络模型压缩
GAN Compression项目提出了一种通用的条件生成对抗网络压缩方法,可将pix2pix、CycleGAN等模型的计算量减少9-29倍,同时保持视觉质量。该方法适用于多种生成器架构和学习目标,支持配对和非配对数据。项目开源了预训练模型、演示和教程,便于研究和应用。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

白日梦AI

白日梦AI提供专注于AI视频生成的多样化功能,包括文生视频、动态画面和形象生成等,帮助用户快速上手,创造专业级内容。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

讯飞绘镜

讯飞绘镜是一个支持从创意到完整视频创作的智能平台,用户可以快速生成视频素材并创作独特的音乐视频和故事。平台提供多样化的主题和精选作品,帮助用户探索创意灵感。

Project Cover

讯飞文书

讯飞文书依托讯飞星火大模型,为文书写作者提供从素材筹备到稿件撰写及审稿的全程支持。通过录音智记和以稿写稿等功能,满足事务性工作的高频需求,帮助撰稿人节省精力,提高效率,优化工作与生活。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号