Project Icon

evidently

用于评估、测试和监控机器学习系统的开源框架

Evidently是一个开源的Python库,专为评估和监控机器学习和大语言模型系统而设计。它支持分类、回归和推荐系统,并提供超过100种内置指标,允许用户自定义评估和测试。Evidently的模块化设计使用户能够通过Reports、Test Suites和实时监控Dashboard轻松实现评估和持续监控,适用于各种AI数据管道,从实验到生产环境。

Obviously AI - 通过无代码方法快速实现数据科学与机器学习
AI创意AI工具AI模型AI辅助设计Obviously AI数据科学无代码AI热门预测分析
Obviously AI 提供易于使用的一站式服务,允许用户通过单一操作完成整个数据科学过程:从建立机器学习算法、解释结果到预测未来。这一切无需任何编程背景,同时支持快速构建、部署顶尖AI模型,有效缩减开发周期,支持模型实时监控与集成。
guardrails - 构建可靠AI应用的Python框架
AI应用GithubGuardrailsPython框架开源项目结构化数据风险检测
Guardrails是一个Python框架,专为构建可靠的AI应用程序而设计。它提供输入/输出保护功能,通过检测、量化和缓解风险,确保应用程序安全。借助Guardrails Hub,用户可以访问多种预构建验证器,组合多个验证器以创建强大的防护系统。Guardrails还支持从LLM生成结构化数据,适用于专有和开源模型。提供便捷的安装和使用指南,支持自定义验证器的创建和贡献,是AI开发者的理想工具。
Awesome-LLM-Eval - 集成了评估工具、数据集、演示与论文资源的平台
GithubLLM应用LLM技术边界大模型评估开源项目评估工具评估数据集
Awesome-LLM-Eval 包罗万象,集成了评估工具、数据集、演示与论文资源,深入探讨大型语言模型的评估技术和方法。该平台支撑学术探索与实际应用,并致力于提升语言模型的透明度及可信度。
trulens - 神经网络评估与解释工具,支持大语言模型开发与监控
GithubTruLensTruLens-EvalTruLens-Explain开源项目深度学习神经网络
TruLens 提供开发和监控神经网络的工具,特别是大语言模型。TruLens-Eval 可系统性评估和跟踪LLM应用,帮助识别和改进性能;TruLens-Explain 提供跨框架的深度学习可解释性,支持TensorFlow、PyTorch和Keras。查看官方文档以获取快速安装和使用指南,帮助开发者高效构建与优化模型应用。
powerful-benchmarker - 高效模型基准测试工具,支持无监督域适应和度量学习
GithubPowerful Benchmarker域适应安装指南开源项目指标学习文件组织
提供功能强大的模型基准测试工具,适用于无监督域适应和度量学习,特色包括三种新验证方法和大规模基准排名。项目提供简便的安装步骤、路径设置和丰富的脚本支持,同时还包含Jupyter notebooks、各种脚本和测试代码,确保实验顺利进行。
bench - LLM性能评估与工作流标准化工具
BenchGitHubGithubLLMpython开源项目评估
Bench是一款适用于生产环境的LLM评估工具,支持比较不同的LLM、提示词和生成超参数(如温度和令牌数量)。它提供统一接口,实现LLM评估流程标准化,可测试开源LLM在特定数据上的表现,并将排行的排名转化为实际用例评分。用户可以安装Bench、创建并运行测试套件,通过本地UI查看结果。
clearml - ML/DL 开发和生产套件
ClearMLGithubMLOps实验管理开源项目数据管理模型部署
ClearML是一个开源平台,集成了实验管理、MLOps/LLMOps、数据管理、模型服务和报告生成功能。支持云端和本地部署,帮助用户实现AI项目的高效管理和自动化,包括实验记录、数据版本控制、模型部署与监控等。ClearML支持多种机器学习和深度学习框架,并与Jupyter Notebook无缝集成,适合团队协作和远程任务执行,提升AI工作流效率。
py-motmetrics - 多目标跟踪性能评估Python库
GithubMOT指标Python库多目标跟踪开源项目性能评估数据分析
py-motmetrics是一个评估多目标跟踪(MOT)性能的Python库。它实现了CLEAR-MOT和ID等评估指标,支持多种距离度量,可跟踪每帧事件,并提供灵活的求解器后端。该库兼容MOTChallenge基准,使用pandas进行数据分析,易于扩展。py-motmetrics为研究人员和开发者提供了全面评估和比较多目标跟踪算法性能的工具。
Openlayer - 机器学习模型评估与监控的一站式平台
AI工具LLM测试Openlayer开发者工具模型监控版本控制
Openlayer为机器学习模型开发提供全面解决方案。该平台集成了测试、评估和监控功能,尤其针对大型语言模型(LLMs)进行了优化。通过自动化测试、实时监控、版本控制和安全部署,Openlayer助力开发者打造高质量的AI模型。平台特色包括快速上手、类Git版本控制、多渠道通知和SOC 2 Type 2认证,满足AI团队高效开发需求。
deepchecks - 用于持续验证 ML 模型和数据的测试
AIDeepchecksGithub开源项目机器学习测试监控
Deepchecks是一款开源工具,专为AI和机器学习模型的验证而设计。它提供从研究到生产的全面测试解决方案,包括数据和模型的测试、持续集成及监控。Deepchecks涵盖数据表格、自然语言处理和计算机视觉的验证需求,并提供详细文档和社区支持,助力提升模型的性能与准确性。用户可轻松安装使用这款工具,确保模型在生产环境中的表现稳定可靠。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号