Project Icon

convnext-xlarge-384-22k-1k

融合现代设计的高性能图像分类卷积神经网络

ConvNeXT是一种创新的纯卷积神经网络模型,结合了ResNet的现代化设计和Swin Transformer的先进理念。该模型在ImageNet-22k数据集上进行了大规模预训练,并在ImageNet-1k上以384x384分辨率精细调优,展现出卓越的图像分类性能。ConvNeXT不仅适用于各类计算机视觉任务,还凸显了传统卷积网络在当代人工智能领域的持续价值和潜力。

NExT-GPT - NExT-GPT多模态语言大模型的前沿应用和技术
GithubNExT-GPT多模态LLM多模态编码开源项目端到端学习语言模型
NExT-GPT,一个先进的多模态语言处理大型模型,支持文本、图像、视频和音频的综合处理。该模型整合了最新科技,提供代码和数据资源,可广泛应用于内容自动生成和多模态交互等领域。它利用先进的多模态编码器和语言模型进行有效的语义理解与生成,同时能输出特定模态内容,满足多种输入与输出需求。
xcit_tiny_12_p8_224.fb_in1k - 跨协方差图像转换器实现图像分类与特征提取
GithubHuggingfaceImageNet-1kXCiT图像分类开源项目机器学习模型神经网络
基于XCiT(Cross-Covariance Image Transformer)架构开发的图像分类模型,在ImageNet-1k数据集上完成预训练。模型包含670万参数量,GMACs为4.8,支持224x224图像输入分辨率。通过跨协方差注意力机制实现图像特征表示,可用于图像分类和特征提取。模型已集成到timm库中,支持top-k分类预测和特征向量提取功能。
xcit_small_12_p16_224.fb_in1k - 跨协方差图像Transformer的高效视觉分类与特征提取模型
GithubHuggingfaceImageNetXCiT图像分类开源项目模型深度学习计算机视觉
XCiT (Cross-Covariance Image Transformer)是Facebook Research开发的视觉分类模型,采用创新的跨协方差注意力机制。模型在ImageNet-1k数据集预训练,包含2630万参数,处理224x224图像输入。通过优化计算效率,该模型在图像分类和特征提取任务中展现出稳定性能。
regnety_120.sw_in12k_ft_in1k - 高级图像分类模型,优化大规模数据集的性能
GithubHuggingfaceRegNetY图像分类开源项目数据集模型特征提取预训练
RegNetY-12GF模型致力于图像分类,先在ImageNet-12k上预训练,再在ImageNet-1k上微调。其结构支持多项增强功能,如随机深度和梯度检查点,提高模型准确性和效率。基于timm库实现,广泛用于特征图提取和图像嵌入,适用于多种图像处理场景。
llava-v1.6-vicuna-7b-hf - 改进的多模态AI模型 增强图像理解和常识推理能力
GithubHuggingfaceLLaVA-Next人工智能助手图像文本生成多模态模型开源项目模型视觉语言处理
LLaVA-NeXT是基于LLaVA-1.5的改进版多模态AI模型。通过增加输入图像分辨率和优化视觉指令调优数据集,该模型显著提升了OCR和常识推理能力。它结合了预训练的大型语言模型和视觉编码器,适用于图像描述、视觉问答和多模态聊天机器人等任务。LLaVA-NeXT支持动态高分辨率处理,并采用多样化、高质量的数据混合方法,从而提供更精确和全面的图像理解。
vit_small_r26_s32_384.augreg_in21k_ft_in1k - ResNet与Vision Transformer结合的图像分类模型解析
GithubHuggingfaceImageNetViTtimm图像分类增广正则化开源项目模型
该模型结合ResNet与Vision Transformer(ViT)的特点,专用于图像分类。最初在ImageNet-21k上训练,后在ImageNet-1k上微调,并在JAX中创建,由Ross Wightman移植到PyTorch环境中。模型采用了36.5M参数和27.7M激活,针对384x384图像进行了优化,通过增强和正则化技术提升了处理复杂图像任务的能力,适用于多种图像识别应用。
resnest101e.in1k - ResNeSt101e 基于ResNet架构的高性能分离注意力图像分类模型
GithubHuggingfaceImageNetResNeSt图像分类开源项目模型深度学习神经网络
ResNeSt101e.in1k是一个基于ResNet架构的分离注意力网络图像分类模型,在ImageNet-1k数据集上训练。该模型拥有4830万参数,13.4 GMACs计算复杂度,支持图像分类、特征提取和图像嵌入等功能。ResNeSt101e在保持较低计算复杂度的同时提供优秀性能,适用于多种计算机视觉应用场景。
vit_base_r50_s16_384.orig_in21k_ft_in1k - ResNet-Vision Transformer混合模型用于高精度图像分类
GithubHuggingfaceImageNetResNetVision Transformertimm图像分类开源项目模型
本模型结合ResNet与Vision Transformer优势,在大规模ImageNet-21k数据集上预训练,并在ImageNet-1k上微调,实现高效准确的图像分类。具备9900万参数,支持384x384像素输入,可用于分类任务和特征提取。研究人员可通过timm库轻松应用此模型,进行推理或深入研究。
ese_vovnet39b.ra_in1k - 高效实时的VoVNet-v2图像分类解决方案
GithubHuggingfaceImageNet-1kVoVNet-v2timm图像分类开源项目模型特征提取
VoVNet-v2是一种预训练于ImageNet-1k的图像分类模型,含高效计算和低能耗优点,并采用RandAugment优化。适用于特征骨干网络,支持图像分类、特征提取和图像嵌入。其关键性能包括24.6M参数、7.1 GMACs等。通过`timm`库,用户可以实现高效的图像分类和特征提取。模型使用ResNet Strikes Back的训练方案,提高了准确度和应用多样性。
eca_halonext26ts.c1_in1k - 基于ResNeXt架构的HaloNet图像分类模型
GithubHaloNetHuggingfaceImageNet-1ktimm图像分类开源项目模型特征提取
eca_halonext26ts.c1_in1k是一种基于ResNeXt架构的HaloNet图像分类模型,采用高效通道注意力机制。该模型在timm库中使用ImageNet-1k数据集训练,参数量为10.8M,GMACs为2.4,适用于256x256图像。它结合了ResNet Strikes Back的训练方法和局部自注意力机制,可用于图像分类、特征图提取和图像嵌入等任务。通过灵活的BYOB架构,该模型在保持计算效率的同时提供了良好的性能和可定制性。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号