Project Icon

rag-token-base

基于检索增强生成的知识型自然语言处理模型

RAG-Token-Base是一个开源的自然语言处理模型,集成了问题编码器、检索器和生成器三个核心组件。模型采用DPR编码器和BART生成器架构,通过结合外部知识实现高质量的文本生成。其灵活的检索器配置功能使其适用于各类知识密集型的语言处理任务。

n-levels-of-rag - RAG应用开发全面指南 从入门到精通
GithubRAG应用开源项目搜索优化文本处理评估方法问答系统
本项目是一个全面的RAG应用开发指南,涵盖基础到高级的多个层次。内容包括核心概念讲解、高级技术介绍、可观察性实践、评估方法和性能优化策略等。适合各层次开发者学习,提供实用知识助力RAG应用开发。
generative-qa-model - 简述AI问答模型的生成式技术
GithubHuggingfacetransformers开源项目模型模型卡模型说明环境影响训练细节
该生成式问答模型基于transformers库,提供开发背景、用途、训练方案及评价标准的信息,帮助了解使用方法并识别潜在风险和局限性。
dpr-ctx_encoder-multiset-base - 基于BERT的开放域问答上下文编码模型
BERTDPRGithubHuggingface信息检索开源项目文本编码模型问答系统
该模型采用BERT架构,经由Natural Questions、TriviaQA等多个数据集训练而成。它能将文本段落高效编码为低维向量,是实现开放域问答的关键技术。作为密集段落检索(DPR)系统的重要组成部分,该模型在多个问答基准上取得了优异成绩,推动了开放域问答技术的发展。
git-base - 微软GIT-base模型 图像到文本的多功能视觉语言处理工具
GITGithubHuggingface图像到文本开源项目微软模型自然语言处理计算机视觉
GIT-base是微软开发的基于Transformer的图像到文本生成模型。该模型能够生成图像和视频的文本描述,支持视觉问答等多种应用。GIT-base采用CLIP图像tokens和文本tokens进行条件训练,基于1000万图文对数据集。作为一个灵活多功能的视觉语言处理工具,GIT-base为图像理解和跨模态任务提供了新的解决方案。
rag-experiment-accelerator - 增强搜索实验效能的全新Azure AI工具
Azure AI SearchGithubOpenAIRAG Experiment Accelerator实验工具开源项目性能优化
RAG Experiment Accelerator是一款面向研究人员、数据科学家和开发者的多功能工具,旨在利用Azure AI Search和RAG模式提升搜索查询实验和评估的效率。主要功能包括实验设定、Azure服务集成、搜索索引创建、多种文档加载器支持、自定义查询生成、多种搜索类型支持,以及细致的结果评估,且全程自动生成报告。最新的更新增加了内容采样功能,确保实验样本的代表性。
Awesome-LLM-Long-Context-Modeling - 包含有关高效转换器、长度外推、长期内存、检索增强生成 (RAG) 和长上下文建模评估的论文和博客的存储库
GithubTransformer优化信息检索大语言模型开源项目自然语言处理长文本处理
本仓库收集了关于高效变换器、长度外推、长期记忆、增强检索生成(RAG)及长文本建模评估的研究论文和博客,提供专业资源用于探索长上下文模型及其挑战,并讨论优化NLP模型的创新方法,适合深度语言模型和复杂文本建模研究人员及开发者。考虑到用户搜索意图的多样性,建议在SEO描述中提及项目对长文本建模从算法到实际应用的全面影响,以及其对未来研究方向的启示。
t5-base-finetuned-question-generation-ap - T5微调模型用于高效问题生成
GithubHuggingfaceSQuADT5开源项目模型自然语言处理迁移学习问题生成
T5-base模型在SQuAD数据集上进行微调,通过整合答案和上下文实现问题生成。项目依托Hugging Face的Transformers库,在Google的支持下,利用迁移学习提升自然语言处理的精确度。支持大规模无标签数据集加载及优化训练脚本,以改善问答生成性能。
gte-multilingual-reranker-base - 高效多语言文本重排模型,提升信息检索性能
GithubHuggingfacegte-multilingual-reranker-base多语言处理开源项目文本嵌入模型阿里巴巴云高性能
gte-multilingual-reranker-base是GTE系列中的多语言文本重排模型,适用于多语言信息检索。其采用编码器架构,在推理速度和硬件需求上均有显著优势,支持超70种语言及处理长达8192词元的文本。另有商业API版本可通过阿里云获得,实验结果获得优秀评价,详见相关论文。
ke-t5-base - 多语言能力的文本生成与统一NLP框架
GithubHuggingfaceT5开源项目文本生成机器学习模型自然语言处理跨语言
KE-T5模型实现了NLP任务的文本到文本一致性处理,适用于翻译、摘要和问答等领域。通过英韩预训练,增强非英语对话模型表现。其220百万参数支持同一损失函数和超参数设定,可用于生成、分类及回归任务。建议用户在使用时留意潜在偏见和局限。
ragna - 高效灵活的RAG编排框架简化AI应用开发
GithubRAG编排框架Ragna开源项目文档检索自然语言处理
Ragna是一个RAG(检索增强生成)编排框架,旨在简化AI应用开发过程。该框架支持Python API、REST API和Web应用界面,方便开发者构建和部署基于RAG的智能系统。Ragna的设计注重灵活性和可扩展性,适应多种AI应用场景。该框架有助于加速智能解决方案的开发,促进AI技术在各领域的应用。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号