Project Icon

sam2-hiera-small

下一代图像和视频可提示视觉分割技术

SAM 2是FAIR推出的一款模型,专注于实现图像和视频的可提示视觉分割。官方代码库支持图像和视频预测任务,允许利用SAM2ImagePredictor生成图像遮罩,并使用SAM2VideoPredictor实现视频中遮罩的传播和处理。该模型在学术研究和工业应用中具有广泛功能。如需深入了解,可查阅相关论文和资源。

GLaMM-GranD-Pretrained - 基于GranD数据集的区域级理解和分割预训练模型
GLaMM-GranD-PretrainedGithubHuggingface图像分割大规模数据集开源项目模型深度学习计算机视觉
GLaMM-GranD-Pretrained是基于GranD数据集预训练的模型,专注于区域级理解和分割掩码生成。GranD数据集包含7.5百万个独特概念和810百万个带分割掩码的区域,通过自动化注释流程生成。该模型为计算机视觉任务提供高级像素分割能力。研究者可通过GitHub或Hugging Face获取模型,并参考相关论文和项目页面深入了解。
MobileCLIP-S2-OpenCLIP - 高效图像-文本模型通过多模态强化训练实现性能突破
GithubHuggingfaceMobileCLIPOpenCLIP图像文本模型多模态强化训练开源项目模型零样本图像分类
MobileCLIP-S2-OpenCLIP是一款基于多模态强化训练的高效图像-文本模型。相比SigLIP的ViT-B/16模型,它在性能上有所超越,同时速度提升2.3倍,模型体积缩小2.1倍,且仅使用了1/3的训练样本。在ImageNet零样本分类任务中,该模型达到74.4%的Top-1准确率,在38个数据集上的平均性能为63.7%,体现了出色的效率与性能平衡。
Realistic_Vision_V2.0 - AI驱动的高品质摄影级图像生成模型
AI绘图GithubHuggingfaceMage.Space关键词提示图像生成开源项目模型高质量照片
Realistic_Vision_V2.0是一个开源的AI图像生成模型,专门用于创建逼真的肖像和场景。该模型支持8K超高清输出,能够呈现精细的皮肤纹理和自然的光线效果。为优化生成结果,模型提供了专门的提示模板和负面提示建议。结合特定的VAE和推荐参数,Realistic_Vision_V2.0能够生成高度写实、专业品质的图像。
MiniCPM-V-2_6 - 高性能多模态语言模型 实现单图多图视频智能理解
GithubHuggingfaceMiniCPM-V人工智能图像理解多模态大语言模型开源项目模型视频理解
MiniCPM-V 2.6是一个高效的多模态大语言模型,仅用8B参数就达到了GPT-4V级别的表现。该模型支持单图、多图和视频理解,在多项基准测试中成绩优异。它具备出色的性能、多图和视频理解能力、强大的OCR功能以及多语言支持。MiniCPM-V 2.6还以其高效率和易用性著称,可轻松部署在包括手机和平板电脑在内的各种设备上。
stable-video-diffusion-img2vid-xt-1-1 - 从图像生成视频的扩散模型的稳定性
GithubHuggingfaceStable Video Diffusion开源项目模型研究用途规定条件视频生成非商业用途
Stable Video Diffusion 1.1 是一款专为研究用途而设计的图像到视频生成模型,通过优化固定条件和运动配置,实现了更一致的视频输出。该模型可以从单张图像生成25帧、分辨率为1024x576的视频片段,但不适用于精确表现真实人物或事件,且不能通过文本进行控制。在探讨生成模型的局限性和偏见时,该模型表现出色。欲了解更多信息,请访问 Stability AI 的 GitHub 仓库。
maskformer-swin-large-ade - MaskFormer模型提升语义分割效率与精确度的创新方案
ADE20kGithubHuggingfaceMaskFormerpanoptic分割实例分割开源项目模型语义分割
MaskFormer通过ADE20k数据集训练,利用Swin结构提升语义、实例和全景分割性能。该模型适用于多种分割任务,采用统一的掩码及标签预测方式处理三类分割,促进图像细分任务的研究和应用,如建筑物和场景的精确分割。项目由Hugging Face团队支持,可在模型中心找到其他版本进行适用性调优。
Depth-Anything-V2-Small-hf - 单目深度估计新标杆 精细、稳健且高效
Depth Anything V2GithubHuggingface人工智能图像处理开源项目模型深度估计计算机视觉
Depth-Anything-V2-Small-hf是一款基于DPT架构和DINOv2主干的先进单目深度估计模型。经过大规模合成和真实图像训练,它在细节精度和稳健性上超越了前代产品。相比基于稳定扩散的模型,该模型速度提升10倍,且更为轻量。它在零样本深度估计任务中表现卓越,可广泛应用于3D重建和场景理解等领域。研究者和开发者可通过Transformers库便捷地集成和使用这一模型。
stable-video-diffusion-img2vid-xt - 图像到视频转换模型Stable Video Diffusion实现动画生成
GithubHuggingfaceStable Video Diffusion人工智能图像到视频生成开源项目模型深度学习计算机视觉
Stable Video Diffusion Image-to-Video是Stability AI开发的扩散模型,可将静态图像转换为短视频。该模型生成25帧、576x1024分辨率的视频片段,视频质量优于同类产品。适用于艺术创作、教育工具等场景,支持商业和非商业用途。模型存在视频较短、不支持文本控制等局限性。开发者可通过GitHub上的开源代码使用该模型。
CogVideoX-2b - 轻量级开源视频生成模型支持低显存推理
CogVideoXGithubHuggingface人工智能开源项目扩散模型文本到视频模型视频生成
CogVideoX-2B是一个基于扩散模型的开源视频生成工具。该模型可将文本描述转化为6秒长、720x480分辨率、8帧/秒的视频。其最低仅需4GB显存即可运行,通过INT8量化还可进一步降低资源消耗。作为入门级选择,CogVideoX-2B在性能和资源使用间取得平衡,适合进行二次开发。模型目前支持英文输入,并提供多种优化方案以提升推理速度和降低显存占用。
DIVA - 扩散模型辅助CLIP增强视觉理解能力
AI视觉CLIPDIVAGithub开源项目扩散模型迁移学习
DIVA是一种创新方法,利用扩散模型作为视觉助手优化CLIP表示。通过文本到图像扩散模型的生成反馈,DIVA无需配对文本数据即可提升CLIP视觉能力。在MMVP-VLM细粒度视觉评估基准上,DIVA显著提升了CLIP性能,同时保持了其在29个图像分类和检索基准上的强大零样本能力。这为增强视觉语言模型的视觉理解开辟了新途径。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号