Project Icon

wav2vec2-large-960h-lv60-self

Wav2Vec2大规模语音识别模型实现低词错误率

Wav2Vec2-large-960h-lv60-self是一个基于Wav2Vec2技术的大规模语音识别模型。该模型在960小时的Libri-Light和Librispeech数据集上进行预训练和微调,采用自训练方法。在LibriSpeech清晰测试集上,模型实现1.9%的词错误率,其他测试集上为3.9%。模型可直接用于音频转录,特别适合标记数据有限的语音识别任务。

wav2vec2-large-xlsr-53-italian - XLSR-53微调的开源意大利语语音识别模型
Common VoiceGithubHuggingfaceWav2Vec2XLSR-53开源项目意大利语模型语音识别
这是一个基于Facebook的wav2vec2-large-xlsr-53模型,在Common Voice 6.1意大利语数据集上微调的语音识别模型。模型在测试集上达到9.41%的词错误率和2.29%的字符错误率。支持直接处理16kHz采样的语音输入,无需额外语言模型。项目提供了详细的使用说明和评估脚本,便于研究人员快速应用和测试。
hubert-large-ls960-ft - Facebook开发的HuBERT大型语音识别模型实现低错误率转录
GithubHuBERTHuggingfaceLibrispeech开源项目机器学习模型自监督学习语音识别
HuBERT-Large-LS960-FT是Facebook AI开发的大型语音识别模型,在960小时LibriSpeech数据集上微调。该模型处理16kHz采样语音,在LibriSpeech和Libri-light基准测试中表现优异,显著降低词错误率。采用自监督学习方法,结合声学和语言模型,为语音识别、生成和压缩提供强大表示学习能力。
wav2vec2-lg-xlsr-en-speech-emotion-recognition - 微调Wav2Vec 2.0实现高精度语音情感识别
GithubHuggingfaceRAVDESS数据集Wav2Vec 2.0开源项目微调模型深度学习语音情感识别
项目利用微调技术优化wav2vec2-large-xlsr-53-english模型,在RAVDESS数据集上训练出准确率达82.23%的语音情感识别系统。该模型可辨别8种情感状态,包括愤怒、平静和厌恶等。这一成果为语音情感分析、人机交互和情感计算领域的研究提供了新的思路和实践参考。
wav2vec2-large-xlsr-53-hungarian - 基于XLSR-53微调的匈牙利语语音识别模型
Common VoiceGithubHuggingfaceWav2Vec2XLSR-53匈牙利语开源项目模型语音识别
该模型基于wav2vec2-large-xlsr-53在匈牙利语语音数据上微调而来,在Common Voice测试集上实现31.40%的词错误率和6.20%的字符错误率,性能优于同类模型。支持16kHz采样率的语音输入,无需额外语言模型即可使用。开发者可通过HuggingSound库或自定义脚本轻松集成该模型,实现匈牙利语语音识别功能。
wav2vec2-base-superb-er - 基于Wav2Vec2的语音情感识别模型实现高精度声学特征提取
GithubHuggingfaceIEMOCAPSUPERBWav2Vec2开源项目情感识别模型语音识别
wav2vec2-base-superb-er是一个针对SUPERB情感识别任务优化的语音情感识别模型。该模型可从16kHz采样的语音中提取声学特征,识别说话者的情感状态。经IEMOCAP数据集训练后,模型能识别4种主要情感类别,测试集识别准确率为62.58%。模型提供pipeline接口和直接调用方式,便于快速部署语音情感分析应用。
wav2vec2-xls-r-300m-cv7-turkish - 基于Wav2vec2优化的土耳其语语音识别模型
Common VoiceGithubHuggingfacewav2vec2-xls-r-300m土耳其语开源项目机器学习模型模型语音识别
该模型是在wav2vec2-xls-r-300m基础上针对土耳其语优化的自动语音识别系统。通过Common Voice 7和MediaSpeech数据集训练,结合N-gram语言模型,在Common Voice 7测试集上实现8.62%词错误率和2.26%字符错误率。模型为土耳其语语音识别提供了高效可靠的开源解决方案,适用于多种语音识别场景。
Wav2Vec2-Large-XLSR-53-catalan - 加泰罗尼亚语自动语音识别模型性能表现
CatalanCommon VoiceGithubHuggingfaceWav2Vec2开源项目模型训练语音识别
项目在Common Voice数据集上微调了Facebook的Wav2Vec2-Large-XLSR-53模型,专注于加泰罗尼亚语的自动语音识别,达到8.11%的WER。支持直接使用无需语言模型的音频处理,并提供使用和评估的详细方法和代码示例。模型训练中处理内存问题的策略也有介绍。用户可考虑更新版本以获取更好的性能。
wav2vec2-large-nonverbalvocalization-classification - Nonverbal Vocalization分类的Wav2vec2模型扩展语音识别应用
GithubHuggingfacewav2vec2准确率声纹识别开源项目模型非语言发声音频分类
该模型利用Nonverbal Vocalization数据集,基于wav2vec2架构,进行非语言声带的分类。可识别诸如咬牙、咳嗽、打哈欠、哭泣等声音分类。Wav2vec2模型不仅提升了语音识别的准确性,还增强了在多语言及多声学场景中的应用。该模型支持简单的部署与系统集成,优化了语音交互的体验。
wav2vec2-large-robust-12-ft-emotion-msp-dim - 基于Wav2vec 2.0的多维语音情感识别模型
GithubHuggingfaceMSP-PodcastWav2vec 2.0开源项目模型神经网络模型语音情感识别音频分类
该模型基于Wav2vec 2.0技术,通过在MSP-Podcast数据集上微调Wav2Vec2-Large-Robust模型实现。它能够处理原始音频信号,识别语音中的唤醒度、支配度和效价三个维度,输出0-1范围内的情感预测结果。此外,模型还提供最后一个transformer层的池化状态,为语音情感分析研究提供了有力支持。
Wav2Vec2-large-xlsr-hindi - 针对印地语优化的开源语音识别模型
GithubHindiHuggingfaceWav2Vec2开源项目模型深度学习自然语言处理语音识别
Wav2Vec2-large-xlsr-hindi是一个专为印地语优化的开源语音识别模型。该模型基于Facebook的wav2vec2-large-xlsr-53架构,通过低资源印度语言多语言ASR挑战数据集进行微调。适用于16kHz采样的语音输入,无需额外语言模型即可直接使用。在Common Voice印地语测试集上,模型达到72.62%的词错误率。项目提供了完整的使用指南、评估方法和训练脚本,为研究人员的进一步开发和应用提供了便利。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号