Project Icon

AITemplate

开源高性能深度学习推理框架

AITemplate是一个开源Python框架,能将深度学习模型转换为CUDA或HIP C++代码,实现高效推理。它支持NVIDIA和AMD GPU,提供接近理论峰值的fp16性能。该框架特点包括独立运行无需第三方库、独特的算子融合技术、与PyTorch兼容以及易于扩展。AITemplate支持ResNet、BERT和Stable Diffusion等多种主流模型。

ByteTransformer - 为BERT类Transformer优化的高性能推理库
BERTByteTransformerGithubNVIDIA GPUTransformer开源项目高性能
ByteTransformer是一个为BERT类Transformer优化的高性能推理库,支持Python和C++ API,兼容固定长度和可变长度Transformer。通过对BERT例程中的QKV编码、软最大值、前馈网络、激活、层归一化和多头注意力机制进行优化,ByteTransformer为字节跳动的内部推理系统提升了性能。基准测试结果显示,相较于PyTorch、TensorFlow、FasterTransformer和DeepSpeed,ByteTransformer在A100 GPU上的推理速度更快。
CTranslate2 - 高效的Transformer模型推理库,提供多种性能优化方案
CTranslate2Github并行执行开源项目性能优化模型压缩转换器模型
CTranslate2是一个用于Transformer模型高效推理的C++和Python库,通过权重量化、层融合、批次重排序等技术,显著提升CPU和GPU上的执行速度并减少内存占用。支持多种模型类型,包括编码器-解码器、仅解码器和仅编码器模型,兼容OpenNMT-py、OpenNMT-tf、Fairseq等框架。其主要特点包括自动CPU检测、代码分发、并行和异步执行以及动态内存使用。
aistore - 分布式存储系统 专为AI与PB级深度学习优化
AIStoreGithub分布式系统对象存储系统开源项目数据管理深度学习
AIStore是专为AI应用设计的轻量级存储系统,具备线性扩展能力和运行时节点弹性。支持从单机到大规模集群部署,提供统一命名空间、ETL卸载和文件数据集等功能。AIStore与PyTorch集成,采用REST API和S3兼容接口,支持多种后端存储,适用于AI和深度学习工作负载。
accelerate - 简化多设备PyTorch训练的框架
AccelerateGithubPyTorch分布式训练开源项目混合精度设备管理
Accelerate是一个轻量级PyTorch训练框架,允许在CPU、GPU、TPU等多种设备上运行原生PyTorch脚本。它自动处理设备分配和混合精度训练,简化了分布式训练流程。研究人员和开发者可专注于模型开发,无需关注底层实现细节,从而加速AI模型的训练和部署。
TensorRT - 提升PyTorch推理效率的工具
CUDAGithubPyTorchTensorRTTorch-TensorRT安装开源项目
Torch-TensorRT将TensorRT的强大功能引入PyTorch,用户仅需一行代码即可显著提升推理性能。该工具支持在多个平台上安装,包括PyPI和NVIDIA NGC PyTorch容器。通过torch.compile或导出式工作流,用户可以高效优化和部署模型。Torch-TensorRT依赖CUDA和TensorRT,与Linux和Windows等多种平台兼容。提供丰富资源,包括教程、工具和技术讲座,供用户学习使用。
tiny-cuda-nn - 专注于快速训练和查询神经网络的开源框架
C++编程CUDAGPUGithubTiny CUDA Neural Networks开源项目深度学习
Tiny CUDA Neural Networks是一个紧凑、高效的开源框架,专注于快速训练和查询神经网络。它包含优化的多层感知器(MLP)和多分辨率哈希编码,并支持多种输入编码、损失函数和优化器。适用于NVIDIA GPU,通过C++/CUDA API和PyTorch扩展,助力高性能计算和深度学习项目。
onnxruntime - 跨平台的机器学习模型推理与训练加速工具
GithubONNX Runtime开源项目机器学习模型训练深度学习硬件加速
ONNX Runtime是一款跨平台的机器学习推理和训练加速工具,兼容PyTorch、TensorFlow/Keras、scikit-learn等深度学习框架及传统机器学习库。它支持多种硬件和操作系统,通过硬件加速和图优化实现最佳性能,显著提升模型推理和训练速度,尤其在多节点NVIDIA GPU上的Transformer模型训练中表现出色。
backend.ai - 灵活高效的容器化计算集群平台 支持多种框架与加速器
APIBackend.AIGithub多租户容器化计算平台开源项目计算资源管理
Backend.AI是一个基于容器的计算集群平台,支持多种计算和机器学习框架及编程语言。平台提供CUDA GPU、ROCm GPU、TPU和IPU等异构加速器支持,可按需分配和隔离计算资源,适合多租户环境。通过REST、GraphQL和WebSocket API暴露功能,为用户提供灵活高效的计算环境。此平台集成了先进的资源调度功能,可实现按需或批量分配计算资源。Backend.AI采用容器技术实现资源隔离,确保多租户环境的安全性和效率。其开放的API架构便于与现有系统集成,为科研、教育和企业用户提供了强大而灵活的计算解决方案。
server - 开源AI推理服务,兼容多种深度学习和机器学习框架
AI推理GithubNVIDIA AI EnterpriseTriton Inference Server开源项目模型优化深度学习框架
Triton Inference Server是一款开源推理服务软件,支持TensorRT、TensorFlow、PyTorch等多种深度学习和机器学习框架。它优化了云端、数据中心、边缘和嵌入式设备的推理性能,适用于NVIDIA GPU、x86和ARM CPU,以及AWS Inferentia。主要功能包括动态批处理、模型流水线、HTTP/REST和gRPC协议支持等。通过Triton,用户可以轻松部署和优化AI模型,提升推理效率。
TensorLayer - 高性能且灵活的深度学习和强化学习工具库
GithubTensorFlowTensorLayer开源软件开源项目强化学习深度学习
TensorLayer 是一个基于 TensorFlow 的深度学习和强化学习库,为研究人员和工程师提供多种可定制的神经网络层,简化复杂 AI 模型的构建。它设计独特,结合了高性能与灵活性,支持多种后端和硬件,并提供丰富的教程和应用实例。广泛应用于全球知名大学和企业,如谷歌、微软、阿里巴巴等。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

Project Cover

天工AI音乐

天工AI音乐平台支持音乐创作,特别是在国风音乐领域。该平台适合新手DJ和音乐爱好者使用,帮助他们启动音乐创作,增添生活乐趣,同时发现和分享新音乐。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号