Project Icon

hiera

简洁高效的分层视觉Transformer模型

Hiera是一种分层视觉Transformer模型,在图像和视频任务中表现出色,同时保持高效推理。该模型简化了现有Transformer的复杂模块,并通过MAE预训练学习空间偏置,实现了简洁高效的架构。项目提供了模型库、推理示例和基准测试脚本,支持通过PyTorch Hub和Hugging Face Hub使用预训练模型。

MetaTransformer - 统一12种模态的多模态学习框架
GithubMeta-Transformer人工智能多模态学习开源项目深度学习计算机视觉
Meta-Transformer是一个创新的多模态学习框架,可处理12种不同模态的数据,包括自然语言、图像、点云和音频等。该框架采用共享编码器架构和数据到序列转换方法,支持分类、检测和分割等多种任务。项目提供开源预训练模型和代码实现,为多模态AI研究提供了有力支持。
hibou-L - 专注数字病理学的预训练视觉Transformer模型
DINOv2GithubHibou-LHuggingface医学影像开源项目模型病理学视觉转换器
面向数字病理学的视觉Transformer模型,通过12亿张医疗图像数据集训练而成。模型专注于病理图像特征提取,可应用于多种病理分析任务,并通过transformers库实现便捷部署。
videomae-base - 基于掩码自编码器的视频自监督预训练模型
GithubHuggingfaceVideoMAE开源项目模型自监督学习视觉Transformer视频处理预训练模型
VideoMAE是一种基于掩码自编码器的视频自监督预训练模型。该模型在Kinetics-400数据集上经过1600轮预训练,采用Vision Transformer架构处理固定大小的视频图像块。VideoMAE不仅可预测被遮挡的视频片段,还能通过微调应用于下游任务。作为视频理解领域的重要进展,它为视频分类等任务提供了强大的特征提取能力。
Multi-Task-Transformer - 场景理解多任务变压器模型 TaskPrompter和InvPT
GithubTransformer场景理解多任务学习开源项目深度学习计算机视觉
Multi-Task-Transformer项目提供两种场景理解多任务变压器模型:TaskPrompter和InvPT。TaskPrompter利用空间-通道多任务提示进行密集场景理解,InvPT采用倒金字塔架构。这些模型在单目深度估计和3D目标检测等任务中表现出色,并在ICLR2023和ECCV2022会议上发表。项目开源代码和预训练模型,支持多种计算机视觉应用。
iris - 基于Transformer的高效样本世界模型
GithubIRISTransformer世界模型开源项目强化学习自动编码器
IRIS是一种基于Transformer的世界模型,通过离散自编码器和自回归Transformer将动态学习转化为序列建模问题。该模型在世界模型中训练数百万个想象轨迹,实现了高效的数据利用。IRIS仅需两小时实时经验就能在多个Atari游戏中表现出色,展现了优秀的样本效率和泛化能力。
HAT - 激活更多像素的图像超分辨率转换器
GithubHATTransformer图像超分辨率开源项目深度学习计算机视觉
HAT是一个开源的图像超分辨率项目,采用混合注意力转换器架构。它在Set5、Urban100等数据集上达到了最先进水平,参数量为20.8M。HAT还提供了小型模型版本和用于真实世界超分辨率的GAN模型,能够处理各种图像重建任务。
MambaVision-S-1K - MambaVision融合Mamba与Transformer的计算机视觉新型架构
GithubHuggingfaceMambaVision图像分类开源项目模型深度学习模型特征提取计算机视觉
MambaVision-S-1K是一种新型计算机视觉模型,首次融合了Mamba和Transformer的设计理念。研究者通过改进Mamba结构增强了其视觉特征建模能力,并验证了与Vision Transformer的有效集成。在ImageNet-1K基准测试中,该模型在准确率和效率方面取得了平衡。MambaVision可用于图像分类和特征提取任务,提供了简洁的调用接口。这一创新架构为计算机视觉领域带来了新的研究思路和应用前景。
vit_base_r50_s16_384.orig_in21k_ft_in1k - ResNet-Vision Transformer混合模型用于高精度图像分类
GithubHuggingfaceImageNetResNetVision Transformertimm图像分类开源项目模型
本模型结合ResNet与Vision Transformer优势,在大规模ImageNet-21k数据集上预训练,并在ImageNet-1k上微调,实现高效准确的图像分类。具备9900万参数,支持384x384像素输入,可用于分类任务和特征提取。研究人员可通过timm库轻松应用此模型,进行推理或深入研究。
dit-base - 面向文档智能处理的自监督预训练图像Transformer模型
DiTGithubHuggingface图像编码开源项目文档分析文档图像转换器模型自监督预训练
DiT-base是一款基于Transformer架构的文档图像处理模型,通过在4200万份文档图像上进行自监督预训练而成。该模型运用掩码补全任务来学习图像的内部表示,可应用于文档分类、表格检测和版面分析等多种任务。DiT-base能够将文档图像编码为向量,为文档智能处理领域的各类应用奠定了基础。
lite-transformer - 现代高效的长短期注意力Transformer模型
GithubLite Transformer分布式训练开源项目数据预处理模型训练测试模型
Lite Transformer是一种结合长短期注意力机制的高效Transformer模型。它基于PyTorch开发,支持多种数据集的下载和预处理,能够在NVIDIA GPU上高效运行。模型在多个大型数据集上表现优异,并支持分布式训练和预训练模型下载。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号