Project Icon

hiera

简洁高效的分层视觉Transformer模型

Hiera是一种分层视觉Transformer模型,在图像和视频任务中表现出色,同时保持高效推理。该模型简化了现有Transformer的复杂模块,并通过MAE预训练学习空间偏置,实现了简洁高效的架构。项目提供了模型库、推理示例和基准测试脚本,支持通过PyTorch Hub和Hugging Face Hub使用预训练模型。

swin-base-patch4-window7-224-in22k - 基于shifted windows的分层视觉Transformer图像处理模型
GithubHuggingfaceSwin Transformer图像分类图像识别开源项目模型深度学习计算机视觉
Swin Transformer是一个在ImageNet-21k数据集上预训练的视觉模型,通过shifted windows机制实现局部特征提取,降低计算复杂度。模型采用分层特征图构建和局部注意力计算方式,适用于图像分类和密集识别任务,计算复杂度与输入图像大小呈线性关系
happy-transformer - 便捷调优与推理NLP Transformer模型
GithubHappy TransformerNLP开源项目文本分类文本生成词预测
Happy Transformer提供简单的方法来调优和推理NLP Transformer模型,主要功能包括DeepSpeed训练、Apple的MPS训练及推理、WandB训练追踪以及直接推送模型到Hugging Face的Model Hub。支持的任务涵盖文本生成、文本分类、单词预测、问答、文本到文本、下一句预测和标记分类。
VILA1.5-13b - 多图像推理与跨设备应用的视觉语言模型
GithubHuggingfaceTransformerVILA多图推理多模态开源项目模型视觉语言模型
此页面介绍VILA模型,一种用于多模态研究的视觉语言模型,通过大规模图文数据预训练,提升多重推理能力。VILA支持多图像推理、情境学习,并提供更丰富的知识表现。通过AWQ 4bit量化,模型适用于Jetson Orin等边缘设备,兼顾性能与兼容性。适合计算机视觉与自然语言处理结合的研究者,支持Linux系统,具备出色的指令跟随和视觉推理能力。
mit-b0 - 轻量级视觉Transformer用于语义分割
GithubHuggingfaceSegFormerTransformer图像处理开源项目模型深度学习语义分割
mit-b0是SegFormer系列中的轻量级模型,采用分层Transformer编码器架构,在ImageNet-1k数据集上预训练。这个模型专为语义分割任务设计,结合了Transformer的特征提取能力和轻量级MLP解码头。mit-b0在ADE20K等基准测试中表现出色,为研究人员提供了一个可靠的预训练基础,可在特定数据集上进行进一步微调和优化。
honeybee - 优化多模态大语言模型性能的局部性增强投影器
GithubHoneybee多模态大语言模型局部性增强投影器开源项目深度学习计算机视觉
Honeybee项目通过局部性增强投影器提升多模态大语言模型性能。该项目在MMB、MME、SEED-I等基准测试中表现优异,提供预训练和微调模型检查点。Honeybee支持多种数据集,包含详细的数据准备、训练和评估指南,为多模态AI研究和开发提供开源工具。
Transformers-Tutorials - Transformers库深度学习模型教程集合
GithubHuggingFaceTransformers开源项目深度学习自然语言处理计算机视觉
这个项目汇集了基于HuggingFace Transformers库的多种深度学习模型教程,涵盖自然语言处理和计算机视觉等领域。内容包括BERT、DETR、LayoutLM等模型的微调和推理示例,展示了在图像分类、目标检测、文档分析等任务中的应用。所有代码采用PyTorch实现,并提供Colab notebooks方便实践。
simpletransformers - 快速构建和优化Transformer模型的开源工具
GithubHugging FaceNLPSimple Transformers开源项目机器学习深度学习
simpletransformers是一个基于Hugging Face Transformers的开源工具,通过简化的API让用户能够用少量代码快速构建和优化Transformer模型。该库支持文本分类、命名实体识别、问答系统等多种NLP任务,为研究人员和开发者提供了便捷的方式来应用这些强大的模型。simpletransformers具有直观的接口和丰富的功能,可用于各类自然语言处理场景,有效降低了使用Transformer模型的门槛。
Transformer-in-Computer-Vision - Transformer在计算机视觉中的最新研究汇总
GithubTransformer开源项目最新论文深度学习视觉算法计算机视觉
项目汇总了最新的基于Transformer的计算机视觉研究论文,涵盖了视频处理、图像分类、目标检测和异常检测等广泛应用场景。用户可点击链接查看具体类别的论文和代码。若发现遗漏研究,欢迎提交问题或请求。最新版本更新于2024年8月8日,为科研人员与开发者提供丰富资源。
SpA-Former-shadow-removal - Transformer模型实现高效图像去阴影
GithubIJCNN 2023SpA-FormerTransformer图像阴影去除开源项目注意力机制
SpA-Former是一种基于Transformer的图像去阴影模型,采用空间注意力机制提取阴影特征。在ISTD数据集上,该模型在PSNR、SSIM和RMSE指标方面表现出色。SpA-Former具有参数量少、计算效率高的特点,适用于实际场景的阴影去除。该研究已在IJCNN 2023会议发表,并开源了预训练模型和测试结果,便于研究者复现和对比。
vit-huge-patch14-224-in21k - 大型视觉Transformer模型实现高效图像识别与特征提取
GithubHuggingfaceImageNet-21kVision Transformer图像识别开源项目模型深度学习预训练模型
vit-huge-patch14-224-in21k是基于ImageNet-21k数据集预训练的大型视觉Transformer模型。它将图像分割为固定大小的块,通过Transformer编码器处理,可用于图像分类等多种计算机视觉任务。该模型提供了强大的图像特征提取能力,适用于各类下游视觉应用。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号